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Multi-criteria decision-making (MCDM) focuses on managing and prioritizing 
decisions that encompass multiple criteria. The use of fuzzy soft set 
frameworks is limited in addressing certain problems when multiple and 
subdivided attributes are involved. Consequently, there was a pressing 
demand for a novel methodology capable of overcoming these challenges. To 
this end, the concept of fuzzy hypersoft matrix (FHSM) is developed. This 
paper introduces various principles related to FHSM, including operations 
like union, intersection, subsets, equality, complements, empty sets, and 
universal sets. It provides numerous apt examples to validate the defined 
notions effectively. Additionally, the paper describes the application of FHSM 
in creating a system for recognizing objects from vague data across multiple 
observers. 
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1. Introduction 
 

Making decisions and solving problems is one of the most difficult aspects of our lives. As a result, 
we must prioritize the best multiple options. Multi-attribute decision aids us in making a decision in 
this case. However, it is possible to gather unreliable information while making a decision. Decisions 
involving uncertainty must be communicated at various stages of life in order to overcome real-life 
obstacles. Uncertainty, ambiguity, and unreliability in data are the most important factors to consider 
when dealing with these issues.  

Various mathematical theories have been introduced to address these issues, including 
probability theory, fuzzy set theory [1], and rough set theory [2]. Zadeh's introduction of fuzzy set 
theory has gained significant popularity in addressing uncertainty concerns. This theory provides an 
appropriate framework for describing uncertain notions by allowing for the use of partial 
membership functions. Mathematicians and computer scientists have researched and developed 
fuzzy sets, leading to the discovery of several practical applications such as fuzzy control systems, 
fuzzy automata, fuzzy logic, and fuzzy topology.  Molodtsov [3] introduced soft set theory in 1999 as  
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a novel technique for representing uncertainty, addressing specific structural challenges of fuzzy set 
theory and other theories. 

Many researchers have made significant attempts to generalize and extend the concept of soft 
sets proposed by Molodtsov [3]. Maji et al. [4] have developed a hybrid structure called the fuzzy soft 
cluster structure by combining the fuzzy set and soft set structure. Put simply, while establishing a 
fuzzy soft set, a degree is included in the parameterization of fuzzy sets [5]. The fuzzy soft set 
structure, which is a synthesis of the soft set structure and fuzzy set structure, has been extensively 
employed by researchers, with numerous papers contributing to the existing literature [6-8].  

Researchers' great interest in this area has led to significant advancements in the application of 
fuzzy soft set structure in decision-making challenges. Unrestricted definition of unreal objects in soft 
sets allows researchers to select the desired parameter format, hence streamlining the decision-
making process and enhancing efficiency in situations where some information is absent. Maji & Roy 
[9] were the first to utilize soft sets in decision-making problems. Chen [10] explained the process of 
simplifying the parameterization of the soft set and examined its use in the decision-making problem. 
Cagman & Enginoglu [11-12] examined the concept of soft matrix and uni-int decision-making, which 
involved selecting the most favorable elements from a range of possibilities.  

This work presents a clear definition of fundamental concepts, including subset, equal set, union, 
intersection, complement, null set, and absolute set, as well as the AND and OR operations on the 
fuzzy hypersoft set structure [13-14]. In addition, we utilized fuzzy hypersoft sets to address the 
decision-making issue. By utilizing Roy & Maji's technique [15], we have formulated a suitable choice 
problem for fuzzy hypersoft sets. This paper introduces the fuzzy hypersoft set structure as a 
fundamental characteristic. Thus, it plays a crucial part in numerous following investigations [16-17]. 
Extensive research has been conducted in the literature on decision-making challenges [18], with 
numerous researchers investigating this topic [19]. The user's text is incomplete and cannot be 
rewritten in a straightforward and precise manner [20-21]. Smarandache [22] introduced a novel 
methodology for managing uncertainty. He extended the soft set to a hypersoft set by converting the 
functionality into a multi-decision function. Despite being a more recent development, the hypersoft 
set theory has garnered significant interest from scholars, as seen by studies conducted by 
researchers [23-24].  

The concepts of linguistic hypersoft set and fuzzy linguistic hypersoft set have been proposed by 
[25]. Some more optimization and decision-making approaches have been used to solve optimization 
problems [26]. The machine learning tools along with decision-making algorithms have been 
employed in many real-world examples [27-28]. Various intricate issues arise from the presence of 
ambiguous data in disciplines such as social sciences, economics, medical sciences, engineering, and 
other fields. These challenges encountered in life cannot be resolved using conventional 
mathematical tools. In classical mathematics, a model is constructed with precision and accuracy [29-
30].  

This research improves the robustness, flexibility, and usefulness of multi-criteria decision-making 
(MCDM) strategies in traversing the complexities of real-world problems by filling in the gaps in 
current methodology and introducing new ideas and tools. 

 
i. This technique is unique because it combines the structural depth of hypersoft sets with 

the elasticity of fuzzy systems. It is designed specifically to handle ambiguous information 
and multiple criterion and decision variables. Traditional MCDM techniques encounter 
numerous challenges due to the inherent ambiguity of real-world data. The fuzzy 
hypersoft matrix (FHSM) provides a method that effectively captures and analyzes the 
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inherent uncertainty present in established processes, especially in complex and dynamic 
situations.  

ii. This study has significant implications for the realm of decision-making. Firstly, it presents 
a consolidated framework that adeptly manages several factors and the lack of clarity in 
the data to establish a more precise and dependable basis for decision-making. 
Furthermore, it broadens the scope of MCDM approaches, allowing for their application 
in a wider range of scenarios, particularly those where imprecise, ambiguous, or missing 
information has previously impeded their use. Finally, this study offers relevant 
information by bridging the divide between theoretical models and their practical 
applications. It accomplishes this by demonstrating the utilization of the Fuzzy hybrid 
scatter search method in several settings. 

iii. Although the stated topics have made progress, there is still a significant research gap in 
integrating fuzzy logic and MCDM approaches with hypersoft sets. Prior research has 
focused on the incorporation of more advanced mathematical prerequisites in HSM or 
has investigated the possibility of using fuzzy logic as a separate technique. The lack of 
thorough research on the integration of hypersoft matrix (HSM) with other subjects is 
evident, and it perpetuates the existing gap in knowledge when examining MCDM. FHSM 
is a methodology that enhances decision-making in various areas that rely on intricate 
criteria, ambiguous data, or both. It has the potential for wider application in fields like 
engineering, healthcare, environmental management, and policymaking.  

 
The organization of the research paper is structured in the following manner: Section 2 provides 

preliminaries. Section 3 presents the definition and operations of hypersoft matrix theory. Section 4 
provides the MCDM algorithm. Section 5 gives a case study. Section 6 discusses the results and 
compares them with existing studies. Finally, the findings of the study and their implications with 
possible future directions are presented in Section 7. 

 
2. Preliminaries  

2.1. Soft Sets 
 

Let us consider that E is the attributive set and 𝕌 is the universal set. The P(𝕌) are expressed 
power set, 𝕌 is the subset. Let 𝔸 be a subset that is contained with E. 𝔸 can then be defined as a soft 
set by 𝕌, which is denoted by the pair (ζ, 𝔸), where ζ: 𝔸 → P(𝕌) is a function mapping elements of 𝔸 
to subsets of the universal set 𝕌. For any element e in A, the set ζ(e) can be interpreted as the set of 
approximate elements or elements within the soft set. Therefore, the soft set specified by (ζ, 𝔸) is 
characterized by this mapping: 
 
(𝜁, 𝔸) = {𝜁(𝑒) ∈ P(𝕌): 𝑒 ∈ E, 𝜁(𝑒) = ∅ if 𝑒 ≠ 𝔸}.  (1) 
 
2.2. Fuzzy Soft Sets 
 

Consider 𝕌 as the universal set and ∈ as the attribute set, with P(𝕌) representing the power set 
of 𝕌. If we assume that 𝔸 is a subset of ∈, then the pair (ζ, 𝔸) defines a fuzzy soft set. This is 
characterized by its mapping as follows: 
 
 𝜁:𝔸 → P(𝕌).  (2) 
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2.3. Hypersoft Sets 
 

Let ℙ(𝜇) be the power set of 𝜇. Considering 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝓃 when 𝓃 ≥ 1 and suppose 𝑛 be well-
defined attributes whose corresponding attributive elements are the set 𝕐1, 𝕐2, 𝕐3 …𝕐𝓃 with 𝕐𝒾 ∩
𝕐𝒿 = ∅, where 𝒾 ≠𝓳 and 𝒾,𝓳𝜖{1,2,3…𝓃}. Then, (𝜉, 𝕐1 × 𝕐2 × 𝕐3 …𝕐𝓃) is called a hypersoft set 
by 𝜇, when:  
 
𝝃: 𝕐𝟏 × 𝕐𝟐 × 𝕐𝟑 …𝕐𝓷 → ℙ(𝝁).  (3) 
 

In Eq. (3), if we assign values to the attributes in the form of fuzzy (membership) only, then it is 
said to be a fuzzy hypersoft set. 

 
3. Fuzzy Hypersoft Matrix 
 

In this section, we present the definition, operations, laws along with theorem, and proposition 
on FHSM. 

Let P be a set of parameters and 𝐿𝑒𝑡 𝕐 = {y1, y2, y3, … y𝛼} be a finite set. The power set of 𝕐 is 
denoted by (𝕐). Let 𝓋1, 𝓋2, 𝓋3 …𝓋𝑛 for 𝑛 ≥ 1 be n well-defined features, whose corresponding 
feature values are the sets 𝛽1, 𝛽2, 𝛽3, … 𝛽𝑛 with 𝛽𝑙 ∩ 𝛽𝑚 = ∅ for 𝑙 ≠ 𝑚, 𝑙, 𝑚 = 1,2…𝑛, respectively, 
and let their relation be 𝜐 = 𝛽1 × 𝛽2 × 𝛽3 × …× 𝛽𝑛. Then the pair (𝛹, 𝜐 ) is called an FHSS over 𝕐, 
where  𝛹: 𝛽1 × 𝛽2 × 𝛽3 × …× 𝛽𝑛 → 𝑃(𝕐) and 𝛹( 𝛽1 × 𝛽2 × 𝛽3 × …× 𝛽𝑡) = 𝛹(𝜐 ), where 𝑡 ≤ 𝑛: 
 
𝒮 = {〈𝜐, 𝒯(𝛹(𝜐 )) y ∈ 𝕐〉}.  (4) 
 

Let  𝜐 = 𝛽1 × 𝛽2 × 𝛽3 × …× 𝛽𝑛 be the relation, and its characteristic function is 𝒳𝜐: (𝛽
1 × 𝛽2 ×

𝛽3 × …× 𝛽𝑛 ) → 𝑃(𝕐). It is defined as: 
 

𝒳𝜐 = {
〈𝜐, 𝒯(𝛹(𝜐 )) y ∈ 𝕐〉,

𝜐 ∈ (𝛽1 × 𝛽2 × 𝛽3 × …× 𝛽𝑛)
}.  (5) 

 

If 𝒮𝑖𝑗 = 𝒳𝜐(𝑦
𝑖, 𝛽𝑗

𝑘), where 𝑖 = 1,2, … , 𝛼 , 𝑗 = 1,2, … , 𝛽, 𝑘 = 1,2, … , 𝑛, then a matrix is defined as: 

 

[𝒮𝑖𝑗]𝛼×𝛽
=

(

 

𝒮11

𝒮21

⋮
𝒮𝛼1

  

𝒮12

𝒮22

⋮
𝒮𝛼2

  

…
…
⋱
… 

  

𝒮1𝛽

𝒮2𝛽

⋮
𝒮𝛼𝛽)

 .  (6) 

 
3.1. Transpose of Square Fuzzy Hypersoft Matrix 

 

Let 𝒮 = [𝒮𝑖𝑗] be FHSM of order 𝛼 × 𝛾, where 𝒮𝑖𝑗 = (𝒯𝑖 𝑗𝑘
𝒮 ). Then 𝒮𝑡 is said to be the transpose of 

square FHSM if rows and columns of E are Interchange. It is denoted as. 
 
𝒮𝑡 = [𝒮𝑖 𝑗]

𝑡 = [𝒯𝑖 𝑗 𝑘
𝒮 ]𝑡 = [𝒯𝑗 𝑘 𝑖

𝒮 ] =  [𝒯𝑗 𝑖].  (7) 

Proposition 3.5. Let 𝓣 = [𝓣𝒊𝒋] and 𝓤 = [𝓤𝒊𝒋] be two FHSMs, where 𝓣𝒊𝒋 = (𝓣𝒊𝒋𝒌
𝓣 ) and 𝓤𝒊𝒋 = (𝓣𝒊𝒋𝒌

𝓤 ). 

For two scalars 𝒑, 𝓽 ∈ [𝟎, 𝟏], then: 
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i. 𝑝(𝓉𝒯) = (𝑝𝓉)𝒯. 
ii. If 𝑝 < 𝓉, then 𝑝𝒯 < 𝓉𝒯. 

iii. If 𝒯 ⊆ 𝒰, then 𝑝𝒯 ⊆ 𝑝𝒰. 
 
Proof of Proposition 3.5. 

 

i. 𝑝(𝓉𝒯) = 𝓈[𝓉𝒯𝑖𝑗] = 𝑝[(𝓉𝒯𝑖𝑗𝑘
𝒯 )] = [(𝑝𝓉𝒯𝑖𝑗𝑘

𝒯 )] = 𝑝𝓉[(𝒯𝑖𝑗𝑘
𝒯 )] = 𝑝𝓉[𝒯𝒯

𝑖𝑗] = (𝑝𝓉)𝒯. 

ii. Since 𝒯𝑖𝑗𝑘
𝒯 ∈ [0,1], 𝑠o 𝑝𝒯𝑖𝑗𝑘

𝒯 ≤  𝓉𝒯𝑖𝑗𝑘
𝒯 . Now 𝑝𝒯 = [𝑝𝒯𝑖𝑗] = [(𝑝𝒯𝑖𝑗𝑘

𝒯 )] ≤ [(𝓉𝒯𝑖𝑗𝑘
𝒯 )] =

[𝓉𝒯𝑖𝑗] = 𝓉𝒯. 

iii. 𝒯 ⊆ 𝒰 ⇒ [𝒯𝑖𝑗] ⊆ [𝒰𝑖𝑗] ⇒  𝒯𝑖𝑗𝑘
𝒯 ≤ 𝒯𝑖𝑗𝑘

𝒰 ⇒  𝑝𝒯𝑖𝑗𝑘
𝒯 ≤  𝑝𝒯𝑖𝑗𝑘

𝒰 ⇒ 𝑝[𝒯𝑖𝑗] ⊆ 𝑝[𝒰𝑖𝑗] ⇒ 𝑝𝒯 ⊆

𝑝𝒰. 
 

Theorem 3.6. Let  𝓣 = [𝓣𝒊𝒋] be the FHSM of order 𝜶 × 𝜸, where 𝓣𝒊𝒋 = (𝓣𝒊𝒋𝒌
𝓣 ). Then: 

 
i.  (𝑝𝒯)𝑡 = 𝑝𝒯𝑡, 𝑤here 𝑝 ∈ [0,1]. 

ii. (𝒯𝑡)𝑡 =  𝒯. 
 
Proof of Theorem 3.6: 

 

i. Here (𝑝𝒯)𝑡, 𝑝𝒯𝑡 ∈  𝐹𝐻𝑆𝑀𝛼×𝛾, so (𝑝𝒯)𝑡 = [(𝑝𝒯𝑖𝑗𝑘
𝒯 )]

𝑡
= [(𝑝𝒯𝑗𝑘𝑖

𝒯 )] = 𝑝[(𝒯𝑗𝑘𝑖
𝒯 )] =

𝑝[(𝒯𝑖𝑗𝑘
𝒯 )]

𝑡
= 𝑝𝒯𝑡.                                                       

ii. Since 𝒯𝑡 ∈  𝐹𝐻𝑆𝑀𝛼×𝛾 𝒯𝑜 (𝒯𝑡)𝑡 ∈  𝐹𝐻𝑆𝑀𝛼×𝛾. Now, (𝒯𝑡)𝑡 = ([(𝒯𝑖𝑗𝑘
𝒯 )]

𝑡
)
𝑡

=

([(𝒯𝑗𝑘𝑖
𝒯 )])

𝑡
= [(𝒯𝑖𝑗𝑘

𝒯 )] =  𝒯. 

 
3.2. Trace of Fuzzy Hypersoft Matrix 
 

Let  𝒯 = [𝒯𝑖𝑗] be the square FHSM of order 𝛼 × 𝛾, where 𝒯𝑖𝑗 = (𝒯𝑖𝑗𝑘
𝒯 ), and 𝛼 = 𝛾. Then, a trace 

of FHSM is denoted as 𝑡𝑟(𝒯) and is defined as: 
 
𝑡𝑟(𝒯) = ∑ [𝒯𝑖𝑖𝑘

𝒯 ]𝛼,𝓏
𝑖=1,𝑘=𝑎 .  (8) 

 

Proposition 3.9. Let 𝓣 = [𝓣𝒊 𝒋] be the square FHSM of order 𝜶 × 𝜸, where 𝓣𝒊 𝒋 = (𝓣𝒊 𝒋 𝒌
𝓣 ) and 𝜶 × 𝜸. 

P be any scalar, then 𝒕𝒓(𝒑𝓣) = 𝒑 𝒕𝒓(𝓣). 
 

Proof of Proposition 3.9. 𝒕𝒓(𝓼𝑶) = ∑ [𝒑𝓣𝒊𝒊𝒌
𝓣 ] = 𝒑∑ [𝓣𝒊𝒊𝒌

𝓣 ]𝜶,𝔃
𝒊=𝟏,𝒌=𝒂

𝜶,𝔃
𝒊=𝟏,𝒌=𝒂 = 𝒑 𝒕𝒓(𝓣). 

 
3.3. Max-Min Product of Fuzzy Hypersoft Matrix 
 

Let 𝒯 = [𝒯𝑖𝑗] and 𝒰 = [𝒰𝑗𝑚] be two FHSMs, where 𝒯𝑖𝑗 = (𝒯𝑖𝑗𝑘
𝒯 ) and 𝒰𝑗𝑚 = (𝒯𝑗𝑘𝑚

𝒯 ). Then, if the 

dimensions of S and 𝒰 are equal (the number of columns in S equals the number of rows in A), they 

are considered conformable. If 𝒯 = [𝒯𝑖𝑗]𝛼×𝛽
 and 𝒰 = [𝒰𝑗𝑚]

𝛽×𝛾
, then 𝒯 ⨂𝒰 = [𝒮𝑖𝑚]𝛼×𝛾. 
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Theorem 3.11. Let = [𝓣𝒊𝒋] , 𝓤 = [𝓤𝒊𝒋] and 𝓡 = [𝓡𝒊𝒋] be FHSM where 𝓣𝒊𝒋 = (𝓣𝒊𝒋𝒌
𝓣 ), 𝓤𝒊𝒋 = (𝓣𝒊𝒋𝒌

𝓤 ) 

and 𝓡𝒊𝒋 = (𝓣𝒊𝒋𝒌
𝓡 ). Then:  

 
i. 𝒯 ∩ (𝒰⨁ℛ) = (𝒯 ∩ 𝒰)⨁(𝒯 ∩ ℛ). 

ii. (𝒯⨁𝒰) ∩ ℛ = (𝒯 ∩ ℛ)⨁(𝒰 ∩ ℛ). 
iii. 𝒯 ∪ (𝒰⨁ℛ) = (𝒯 ∪ 𝒰)⨁(𝒯 ∪ ℛ). 
iv. (𝒯⨁𝒰) ∪ ℛ = (𝒯 ∪ ℛ)⨁(𝒰 ∪ ℛ). 

 
Proof of Theorem 3.11. 

 

i. 𝒯 ∩ (𝒰⨁ℛ) = (𝒯𝑖𝑗𝑘
𝒯 ) ∩ [( 

(𝒯𝑖𝑗𝑘
𝒯 +𝒯𝑖𝑗𝑘

ℛ )

2
)] = [(min(𝒯𝑖𝑗𝑘

𝒯 ,
(𝒯𝑖𝑗𝑘

𝒰 +𝒯𝑖𝑗𝑘
ℛ )

2
))] =

[(min( 
 (𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
𝒰 )

2
,
 (𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
ℛ )

2
))] = [(min(𝒯𝑖𝑗𝑘

𝒯 , 𝒯𝑖𝑗𝑘
𝒰 ))]⨁[(min(𝒯𝑖𝑗𝑘

𝒯 , 𝒯𝑖𝑗𝑘
ℛ ))] = [(𝒯𝑖𝑗𝑘

𝒯 ) ∩

(𝒯𝑖𝑗𝑘
𝒰 )]⨁[(𝒯𝑖𝑗𝑘

𝒯 ) ∩ (𝒯𝑖𝑗𝑘
ℛ )] = (𝒯 ∩ 𝒰)⨁(𝒯 ∩ ℛ). 

ii. (𝒯⨁𝒰) ∩ ℛ = [( 
(𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
𝒰 )

2
)] ∩ (𝒯𝑖𝑗𝑘

ℛ ) = [(min( 
 (𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
𝒰 )

2
, 𝒯𝑖𝑗𝑘

ℛ ))] =

[(min( 
 (𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
ℛ )

2
,
 (𝒯𝑖𝑗𝑘

𝒰 +𝒯𝑖𝑗𝑘
ℛ )

2
))] = [(min(𝒯𝑖𝑗𝑘

𝒯 , 𝒯𝑖𝑗𝑘
ℛ ))]⨁[(min(𝒯𝑖𝑗𝑘

𝒰 , 𝒯𝑖𝑗𝑘
ℛ ))]  = [(𝒯𝑖𝑗𝑘

𝒯 ) ∩

(𝒯𝑖𝑗𝑘
ℛ )]⨁[(𝒯𝑖𝑗𝑘

𝒰 ) ∩ (𝒯𝑖𝑗𝑘
ℛ )] = (𝒯 ∩ ℛ)⨁(𝒰 ∩ ℛ). 

iii. 𝒯 ∪ (𝒰⨁ℛ) = (𝒯𝑖𝑗𝑘
𝒯 ) ∪ [( 

(𝒯𝑖𝑗𝑘
𝒯 +𝒯𝑖𝑗𝑘

ℛ )

2
)] = [(max (𝒯𝑖𝑗𝑘

𝒯 ,
(𝒯𝑖𝑗𝑘

𝒰 +𝒯𝑖𝑗𝑘
ℛ )

2
))] =

[(max ( 
 (𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
𝒰 )

2
,
 (𝒯𝑖𝑗𝑘

𝒯 +𝒯𝑖𝑗𝑘
ℛ )

2
))] = [(max(𝒯𝑖𝑗𝑘

𝒯 , 𝒯𝑖𝑗𝑘
𝒰 ))]⨁[(max(𝒯𝑖𝑗𝑘

𝒯 , 𝒯𝑖𝑗𝑘
ℛ ))] = [(𝒯𝑖𝑗𝑘

𝒯 ) ∪

(𝒯𝑖𝑗𝑘
𝒰 )]⨁[(𝒯𝑖𝑗𝑘

𝒯 ) ∪ (𝒯𝑖𝑗𝑘
ℛ )] = (𝒯 ∪ 𝒰)⨁(𝒯 ∪ ℛ). 

iv. (𝓣⨁𝒰) ∪ ℛ = [( 
(𝓣𝑖𝑗𝑘

𝓣 +𝓣𝑖𝑗𝑘
𝒰 )

2
)] ∪ (𝓣𝑖𝑗𝑘

ℛ ) = [(max ( 
 (𝓣𝑖𝑗𝑘

𝓣 +𝓣𝑖𝑗𝑘
𝒰 )

2
, 𝓣𝑖𝑗𝑘

ℛ ))] =

[(max ( 
 (𝓣𝑖𝑗𝑘

𝓣 +𝓣𝑖𝑗𝑘
ℛ )

2
,
 (𝓣𝑖𝑗𝑘

𝒰 +𝓣𝑖𝑗𝑘
ℛ )

2
))] = [(max(𝓣𝑖𝑗𝑘

𝓣 , 𝓣𝑖𝑗𝑘
ℛ ))]⨁[(max(𝓣𝑖𝑗𝑘

𝒰 , 𝓣𝑖𝑗𝑘
ℛ ))] =

[(𝓣𝑖𝑗𝑘
𝓣 ) ∪ (𝓣𝑖𝑗𝑘

ℛ )]⨁[(𝓣𝑖𝑗𝑘
𝒰 ) ∪ (𝓣𝑖𝑗𝑘

ℛ )] = (𝓣 ∪ ℛ)⨁(𝒰 ∪ ℛ). 

 
4. Algorithm 
 

For decision-making in uncertain contexts, MCDM algorithms are invaluable tools, especially 
when applied to fuzzy hypersoft matrices. These algorithms handle alternatives and uncertainties 
present in real-world scenarios by considering several factors and using fuzzy logic to enable more 
robust and informed decision-making. Decision-makers obtain an understanding of their practical 
utility in a variety of sectors, including engineering, finance, and healthcare, through case studies that 
illustrate their applicability. The steps of our algorithm are: 

Step 1 − Create an FHSM using Eq. (6). 

Step 2 − Create a value matrix for FHSM. Let 𝒯 = [𝒯𝑖𝑗] be the order's FHSM, where 𝒯𝑖𝑗 = (𝒯𝑖𝑗𝑘
𝒯 ). 

The value of matrix S is therefore denoted by V(S) with (S)= [𝒱𝑖𝑗
𝒯] of order 𝛼 × 𝛾, where𝒱𝑖𝑗

𝒯 = 𝒯𝑖𝑗𝑘
𝒯 . 
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Step 3 − Value matrices are used to calculate the score matrix. The score of two FHSM 𝒯 = [𝒯𝑖𝑗]  

and  𝒰 = [𝒰𝑖𝑗]  of order 𝛼 × 𝛾 is given as 𝒮(𝒯, 𝒰) = 𝒱(𝒯) + 𝒱(𝒰) and 𝒮(𝒯,𝒰) = [𝒮𝑖𝑗], where 

𝒮𝑖𝑗 = 𝒱𝑖𝑗
𝒯 + 𝒱𝑖𝑗

𝒰. 

Step 4 − Utilize the score matrix to determine the overall score. The total rating of each item in 

the universal set is |∑ 𝒮𝑖𝑗
𝑛
𝑗=1 |. 

Step 5 − To discover the best answer, choose the item with the highest score from the total score 
matrix.  

Figure 1 presents the proposed algorithm. 
 

 
Fig. 1. Proposed Algorithm. 

 
5. Case Study 
 

Let 𝕐 = {𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5} be the set of options. Attributes are classified as “performance” (𝛽1) 
(i.e. to select a performance according to scale={1, 2, 3, 4}), “grades” (𝛽2) (with grades as {A, A-, B+, 
B}), “research” (𝛽3) (i.e. research score according to educational department as {AAA, BBB, CCC}), 
and “institute” (𝛽4) (i.e. government, private, and semi-government). The mapping is defined as 
𝛹: (𝛽1 × 𝛽2 × 𝛽3 × 𝛽4) → 𝑃(𝕐). Let us assume: 
𝒮 = 𝛹 (3, A−, CCC, gov) = {〈𝛿1 , ( 3 (0.3), 𝐴 − (0.4), 𝐶𝐶𝐶 (0.6), 𝑔𝑜𝑣 (0.4)〉, 〈𝛿3 , (3 (0.2), 𝐴 −
 (0.5), 𝐶𝐶𝐶 (0.8), 𝑔𝑜𝑣(0.5)〉, 〈𝛿9 , ( 3 (0.3), 𝐴 − (0.4), 𝐶𝐶𝐶 (0.5), 𝑔𝑜𝑣 (0.2)〉 , 〈𝛿15 , (3 (0.4), 𝐴 −
 (0.6), 𝐶𝐶𝐶 (0.2), 𝑔𝑜𝑣(0.5)〉}. Also: 
 𝒯 = 𝛹 (3, A−, CCC, gov) = {〈𝛿1, ( 3 (0.1), 𝐴 − (0.4), 𝐶𝐶𝐶 (0.4), 𝑔𝑜𝑣 (0.3)〉, 〈𝛿3 , ( 3 (0.2), 𝐴 −
 (0.6), 𝐶𝐶𝐶 (0.9), 𝑔𝑜𝑣(0.6)〉 , 〈𝛿9 , ( 3(0.2), 𝐴 − (0.7), 𝐶𝐶𝐶 (0.6), 𝑔𝑜𝑣 (0.5)〉 , 〈𝛿15, (3 (0.6), 𝐴 −
 (0.4), 𝐶𝐶𝐶 (0.4), 𝑔𝑜𝑣(0.4)〉 }. 

Then, we apply the algorithm for the calculation of total values: 

Step 1 − The above two sets of FHSSs are given as FHSMs: 

[𝒮] = [

3(0.3) 𝐴 − (0.4)
3(0.2) 𝐴 − (0.5)

𝐶𝐶𝐶(0.6) 𝑔𝑜𝑣(0.4)
𝐶𝐶𝐶(0.8) 43𝑔(0.5)

3(0.3) 𝐴 − (0.4)
3(0.4) 𝐴 − (0.6)

𝐶𝐶𝐶(0.5) 𝑔𝑜𝑣(0.2)
𝐶𝐶𝐶(0.2) 𝑔𝑜𝑣(0.5)

],  

[𝒯] =

[
 
 
 
3(0.1) 𝐴 − (0.4)

3(0.2) 𝐴 − (0.6)
𝐶𝐶𝐶(0.4) 𝑔𝑜𝑣(0.3)

𝐶𝐶𝐶(0.9) 𝑔𝑜𝑣(0.6)

3(0.2) 𝐴 − (0.7)

3(0.6) 𝐴 − (0.4)

𝐶𝐶𝐶(0.6) 𝑔𝑜𝑣(0.5)

𝐶𝐶𝐶(0.4) 𝑔𝑜𝑣(0.4)]
 
 
 

.  

Step 2 − Now calculate the values matrices of FHSMs as: 

[𝑣((𝒮)] =

[
 
 
 
3(0.3) 𝐴 − (0.4)

3(0.2) 𝐴 − (0.5)

𝐶𝐶𝐶(0.6) 𝑔𝑜𝑣(0.4)

𝐶𝐶𝐶(0.8) 𝑔𝑜𝑣(0.5)

3(0.3) 𝐴 − (0.4)

3(0.4) 𝐴 − (0.6)
𝐶𝐶𝐶(0.5) 𝑔𝑜𝑣(0.2)

𝐶𝐶𝐶(0.2) 𝑔𝑜𝑣(0.5)]
 
 
 

,  
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[𝑣(𝒯)] =

[
 
 
 
3(0.1) 𝐴 − (0.4)

3(0.2) 𝐴 − (0.6)

𝐶𝐶𝐶(0.4) 𝑔𝑜𝑣(0.3)

𝐶𝐶𝐶(0.9) 𝑔𝑜𝑣(0.6)

3(0.2) 𝐴 − (0.7)

3(0.6) 𝐴 − (0.4)
𝐶𝐶𝐶(0.6) 𝑔𝑜𝑣(0.5)

𝐶𝐶𝐶(0.4) 𝑔𝑜𝑣(0.4)]
 
 
 

.  

Step 3 − Compute the score matrix by combining the value matrices as: 

(𝒮(𝒮, 𝓣) =

[
 
 
 
3(0.4) 𝐴 − (0.8)

3(0.4) 𝐴 − (1.1)
𝐶𝐶𝐶(1.0) 𝑔𝑜𝑣(0.7)

𝐶𝐶𝐶(1.7) 𝑔𝑜𝑣(1.1)

3(0.5) 𝐴 − (1.1)

3(1.0) 𝐴 − (1.0)

𝐶𝐶𝐶(1.1) 𝑔𝑜𝑣(0.7)

𝐶𝐶𝐶(0.6) 𝑔𝑜𝑣(0.9)]
 
 
 

.  

Step 4 − Compute a total score as: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = [

1.2
2.3
4.1
1.9

].  

Step 5 − 𝛿3 will be the best choice. 
 

6. Discussion and Comparison 
 

Through the comparative assessment presented in Table 1. Furthermore, in the context of 
decision-making, our approach provides a richer informational basis for navigating the uncertainties 
inherent in data. Additionally, numerous configurations of FS composite structure are encapsulated 
as specific instances within FHSM. Our approach allows for a more precise and empirical 
representation of information pertaining to the subject matter, making it an advantageous tool for 
integrating imprecise and uncertain data within decision-making frameworks. Consequently, our 
method demonstrates effectiveness, adaptability, simplicity, and superiority.  
 
  Table 1 
  The result comparison with existing studies 

 Set Truthiness Attributive  
Sub-
attributive  

Parametrization  Advantages   

Zadeh [1] FS ✓ × ✓ × 
Addresses uncertainty through the 
application of fuzzy intervals 

Maji et al. 
[9] 

FSM ✓ × ✓ ✓ 
Addresses uncertainty through the 
application of fuzzy soft intervals  

Proposed  FHSM ✓ ✓ ✓ ✓ 
Addresses uncertainty through the 
application of FHSM 

 
7. Conclusion  
 

This research delves into the essential characteristics, aggregation processes, and foundational 
principles of fuzzy set theory, emphasizing their applications and relevance in the context of 
hypersoft sets and hypersoft matrices. It further explores the critical aspects and elementary 
operations of matrices within this unique set environment. Additionally, the study outlines 
prospective pathways for future research, highlighting the potential for creating novel hybrid models 
by combining hypersoft sets with other mathematical frameworks such as fuzzy sets, rough sets, 
expert sets, and cubic sets. It also proposes the exploration of advanced algebraic constructs, 
including the development of hypersoft topological spaces, functional spaces, groups, vector spaces, 
rings, and measures. These future directions aim to expand the utility and understanding of hypersoft 
sets, offering innovative approaches to complex problem-solving and theoretical advancement in the 
field. 
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