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Operating room scheduling comprises determining the specific start timings 

for surgeries and allocating the necessary resources to each scheduled 

surgery. It takes into account multiple limitations to ensure a comprehensive 

surgical process, including the availability of resources, specialties, and 

restrictions. Several surgeons have different specialties, and each has a 

waiting list of patients whose surgeries must be scheduled on the days the 

surgeons are in one of the operating rooms. In addressing this matter, two 

objectives are taken into account: minimizing expenses associated with 

overtime and unutilized operating rooms, while maximizing the number of 

days patients wait for surgery. The resolution of this problem involves two 

approaches: mathematical modeling and optimization through simulation-

based methods. The findings indicate that when addressing the operating 

room scheduling issue, the simulation-based optimization solution matches 

the quality of the solution provided by the mathematical model for smaller 

problems and offers a timely and satisfactory solution for larger-scale 

problems. 
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1. Introduction 

Surgical care presents one of the primary areas where healthcare providers encounter significant 

challenges in terms of resource allocation, expenses, and income generation, the operating room 

serves as the central hub, constituting approximately 65% of hospital admissions. Conversely, it 

stands out as one of the costliest departments within hospital budgets, representing around 35% of 

total hospital costs. Operating rooms have the largest share in the costs of any hospital and, on the 

other hand, its income. Although surgeries and patient types vary, the typical procedure for patient 

visits follows this pattern: Initially, patients are prepared for surgery either randomly (in the case of 

emergency patients) or based on scheduled appointment times (for selected patients). Once the 

designated operating room becomes available, the patient is moved to that room. Following the 

surgery, the patient is transferred to the recovery room and subsequently to either a general ward, 

specialized care unit, or emergency department.  

________________________ 
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Scheduling operating rooms means determining the day of surgery, the sequence of surgeries, 

and the time of each in a day and allocating required resources (such as surgeons, anesthesiologists, 

and equipment) according to the existing limitations [1]. Meanwhile, multiple and occasionally 

conflicting objectives need to be fulfilled, with the primary aim of enhancing patient service levels 

while concurrently lowering hospital expenses. The probabilities of events such as patient arrival 

times, duration of surgeries, availability of operating room staff and other resources, and the time 

required for operating room preparation further complicate the issue [2]. The tendency to use 

simulation and meta-engineering optimization algorithms can be seen in recent research. Numerous 

researchers have drawn parallels between operating room planning and scheduling challenges and 

established optimization problems. Examples include likening the allocation of surgeries to packaging 

problems, scheduling surgeries while accounting for preparation time, allocating work to parallel 

machines, and adopting an open approach to scheduling akin to dividing sets. Various objective 

functions have been explored for scheduling operating rooms [3]. Prolonged waiting times for 

surgery stand out as a typical patient grievance. Lengthening queues for medical services in hospitals, 

particularly for surgeries, not only risks exacerbating patients' conditions due to delayed treatment 

but may also discourage them from seeking care altogether, worsening their situations [4]. Reducing 

patient waiting time serves as a key criterion for identifying an optimal schedule. Additionally, the 

hospital incurs expenses for the entire duration that operating rooms and surgical teams remain 

available. Thus, minimizing idle time is ideal to avoid unnecessary costs. However, achieving 

complete elimination of idle time is impractical due to the unpredictable nature of events, which 

necessitates schedule adjustments. Moreover, overloading a single day with numerous operations to 

minimize idle time risks incomplete procedures within regular working hours [5]. As a result, 

resources have to stay in the hospital for more hours. Typically, operating room overtime leads to an 

increase in hospital costs. Costs resulting from both idle time and overtime are overhead costs. While 

the hospital's expenditure on employee salaries during surgery hours remains fixed, costs stemming 

from idle time or overtime in operating rooms are controllable through proper scheduling. Therefore, 

minimizing idle time and overtime among operating room staff stands as a crucial criterion in 

assessing a schedule's effectiveness.  

Various mathematical models have been prepared to describe various forms of the operating 

room scheduling problem. Bre et al. [6] devised a straightforward model outlining their approach to 

assigning surgeries across a planning horizon (e.g., a week) to various time slots (e.g., days of the 

week). Similarly, [7] constructed a basic model for concurrently assigning operating rooms to 

surgeons and their respective patients to minimize hospital costs and patient waiting times. The 

duration of surgeries and the arrival of non-elective patients represent two unpredictable and 

stochastic events that significantly influence the efficiency of operating rooms [8-9]. The key to 

effectively managing them lies in employing appropriate scheduling strategies for surgeries. While 

there are additional uncertainties within the system, such as potential delays for selected patients or 

the surgical team, alternative methods can often mitigate these occurrences, which typically have 

minimal impact on operations. Some studies have also examined these random variables in their 

research. The multitude of complexities inherent in the problem, particularly the occurrence of 

various events, has sparked a surge in utilizing simulation as a means to tackle it [10-12]. In recent 

times, simulation has not only been employed for scenario analysis but has also been utilized in 

optimization approaches. In studies comparing the problem of sequencing surgeries across multiple 

rooms, akin to parallel machine scheduling, simulation-based methods have been examined 

alongside simpler sequencing strategies [13] . In another study, the preparation time for operating 

rooms has been distinguished from the duration of surgeries and linked to subsequent operations. 
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Another study introduced a simulation-based optimization tool utilizing the meta-heuristic approach 

of simulated annealing [14]. 

This research involved constructing a simulation-based model for an outpatient surgery center 

with the aim of minimizing wait times and patient dropout rates. Three optimizers were developed, 

all utilizing the simulated annealing algorithm. The distinction lies in that the initial solution for two 

of them is derived from a mathematical model. Another study implemented a two-stage scheduling 

simulation: initially assigning surgeries to specific rooms, followed by determining the sequence of 

surgeries within each room. The timing in this approach wasn't driven by optimization but rather by 

employing an innovative and distinct algorithm across various scenarios, with the results of these 

scenarios subsequently compared. In addressing the operating room scheduling problem, 

optimization, scenario analysis, and problem complexity analysis stand out as the most crucial 

methodologies. Optimization endeavors to identify solutions that either precisely or approximately 

maximize the objective function. On the other hand, scenario analysis aims solely to evaluate the 

performance across various system configurations. The complexity analysis approach, albeit present 

in a limited number of studies, delves into scrutinizing the intricacies of operating room scheduling 

problems or the proposed solutions. For instance, research introducing and formulating a problem 

aimed at reducing the waiting time for emergency patients demonstrated that this problem falls 

under the category of NP-hard. The selection of problem-solving method is another critical aspect to 

consider in research methodology. Mathematical planning and its exact solution methods, heuristic 

and meta-heuristic methods, as well as simulation, are utilized to address surgery scheduling 

problems. It's evident that the selection of an appropriate method depends on the research 

approach. For instance, simulation is often more suitable for conducting scenario analysis. 

Based on these explanations, several recent articles addressing operating room scheduling can 

be classified as shown in Table 1. 
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This classification draws inspiration from existing categorizations. While it may be incomplete, it 

does shed light on some distinctions between current and previous research. Notably, the utilization 
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of novel methods to tackle multi-criteria optimization problems in operating room scheduling 

appears to be a relatively emerging area of focus . 

The contribution and novelties of this research are as follows: 

 

i. Considering the impact of surgeons' skill levels during surgeries is crucial. Surgeons' 

proficiency is a predictable factor that can significantly influence procedure durations, 

thereby affecting scheduling. However, despite reviews, none of the prior research has 

addressed this factor in operating room scheduling. 

ii. We considered the simultaneous use of two methods of mathematical modeling and 

simulation-based optimization and compared these methods with each other in the issue 

of operating room scheduling. 

iii. Two metaheuristic algorithm approaches, defined as the multi-objective evolutionary 

algorithm (MOEA) and NSGA-II, are proposed, where each solution evaluation is 

computationally and financially expensive to assess uncertainty based on limited 

resources. 

 

The rest of this paper is organized as follows. Section 2 discusses the methodology and problem 

statement. Section 3 outlines the solution approaches, and introduces the two various optimization 

algorithms model. Section 4 presents comparative findings among various optimization methods. 

Section 5 proposes about discussion and some implications related to gaps and limitations. Lastly, 

Section 6 provides concluding remarks and outlines future directions. 

 

2. Methodology  

2.1. Problem Statement 

 

In this research, to enhance its applicability, we selected a public hospital in Shanghai as our study 

site, aiming to develop a model based on a real-world scenario. Each of the 60 surgeons at this 

hospital is available for surgery on specific days of the week, operating only on those days as per the 

schedule managed by the operating room administration. However, there is no fixed assignment of 

a particular room to a specific surgeon on any given day. Instead, the hospital allocates its 10 

operating rooms to surgical groups, each consisting of several surgeons, throughout the week. After 

a patient consult with a surgeon and surgery is deemed necessary, the patient's name and the type 

of operation are communicated to the operating room management. Each day, the operating room 

finalizes the schedule for surgeries scheduled for the following day. Surgeons then announce and 

allocate rooms and shifts for these surgeries. Figure 1 shows a view of this process. 

 

 

Fig. 1. The framework of the surgical process of patients in the operating room of the hospital. 
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The scheduling of the operation rooms in this hospital aims to achieve two primary objectives: 

Firstly, to minimize the overall costs resulting from nurses' and doctors' underemployment or 

overtime in the operating rooms. Secondly, to reduce patient waiting times. Assuming all patients 

are equally prioritized, the second objective can be viewed as maximizing the number of surgeries 

performed per day. 

 

2.2. Mathematic Model 

2.2.1. Assumptions 

 

To prepare the mathematical model of this problem, we add the following assumptions to the 

mentioned facts: 

 

i. As someone in a position to make decisions, the operating room supervisor must 

determine whether all patients will undergo surgery on the same day. 

ii. The planning and scheduling remain unchanged. This entails no cancellations, additions, 

or alterations to the operating room schedule or sequence. 

iii. Patients and surgeons must be available from the beginning of the scheduling period 

(specified day). 

iv. Each surgery requires only one surgeon, along with the anesthesia team and nurses, to 

perform the surgery. 

v. Apart from the surgeon and the operating room, all necessary resources including 

recovery beds and special care facilities are sufficiently available, ensuring surgeries are 

not delayed due to resource constraints . 

vi. The duration of the operation, including associated pre- and post-operative procedures 

within the operating room, as well as the recovery time, are predetermined and 

consistent for each patient. 

vii. The total anticipated duration of surgeries scheduled during an operating room session 

must be at most its allocated time frame. 

 

In regard to the underlying assumptions of the problem, it is crucial to note that the duration of 

each surgery primarily hinges on the surgeon's expertise and the nature of the procedure. Surgeries 

typically range from approximately 40 minutes to nearly 6 hours, with the recovery period also 

contingent upon the type of operation. Given that the surgeon and the type of operation are already 

identified, we can naturally anticipate this variability in advance. All research conducted for this study 

is based on data reviewed from Shanghai Children's Hospital. In order to develop our optimization 

model, we present the following indices, parameters, and decision variables. 

 

Indices: 

� ∈ � number of operating rooms 

� ∈ � number of patients 

� ∈ � number of surgeons 

� ∈ 	 period of time 

 

Parameters: 

	�  twice the regular cost is incurred for each additional hour of overtime in the 

operating room 

��     the cost of each hour of idle time in the operating room 

�� availability of surgeon equal to 1 or unavailability of 0 surgeon s 
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�
��� the probability of patient p being operated on is equal to 1 or the impossibility of 

0 in the operating room o 

�� the duration of the patient's surgery p 


� the duration of the patient's recovery p 

�� normal working hours of the operating room, 

��
��� the surgery time limit for surgeon s in one day 

��
�
��� overtime limit for operating room o in one day 

���� patients of surgeon s 

��
� operating room o overtime for surgeons 

��� the duration of patient p surgery 

���� idle period of operating room o when patients are not in surgery 

           

Decision variables: 

��� if patient p is operated on in operating room o, equal to 0; otherwise 1 

����� if patient p is operated on immediately after patient p' in the surgical sequence it 

equals 1; otherwise, it is 0 (that is, both patients belong to the same surgeon) 

���,��� if patient p is selected in the sequence of the surgeon for the first/last surgery, 

equal to 1; otherwise 0 

���,���,� If none of the patients of surgeon s are operated on, it is equal to 1. Otherwise, 

those who are operated on is equal to 0, 

�
���� If patient p is operated in the operating room sequence immediately after patient 

p, it is equal to 1, otherwise 0, 

���,���,� If patient p is placed in the sequence of an operating room o as the first/last 

surgery, it is equal to 1 and otherwise, 0, 

���,���,� If no patient is operated on in the operating room o, it equals 1. Otherwise, some 

are operated on 0, 

 

The mathematical programming model for operating room in healthcare under limitation capacity 

can be represented as follows using the above notations: 
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The objective functions summarized in objectives (1) and (2) involve reducing overhead costs and 

optimizing scheduled surgeries, which aligns with minimizing patient waiting time. Within this 

framework, the waiting period is treated uniformly, disregarding any distinctions between patients 

or their duration on the waiting list. Eq. (3) guarantees that each surgical procedure is scheduled 

exclusively when the surgeon is accessible on that day. Eq. (4) ensures that every surgery is allocated 

to a suitable slot based on its fit. Eq. (5) guarantees that the total scheduled surgical hours for each 

surgeon remain below the predetermined maximum limit. Eq. (6) and Eq. (7) require the inclusion of 

an alternative surgeon in the sequence of planned surgeries for each incumbent surgeon, both before 

and after every surgery. Eq. (8) and Eq. (9) also cause surgery to be placed at the beginning and end 

of each surgeon's sequence Unless no surgery is scheduled. Eqs. (10)−(13) have a similar function for 

the sequence of surgeries in the operations. Inequalities (14)−(17) determine the completion time of 

planned surgeries, which must be at least equal to the total duration of operation and recovery after 

the previous patient in the sequence of the surgeon and the duration of the operation after the 

previous patient in the sequence of the operating room. In these relations, M is a large number. A 

set of limitations are written for calculating idle and overtime times. Regarding Eq. (15), the patient's 

hypothetical surgery completion time is assumed to be zero to maintain consistency and avoid 

interfering with other computations. With the explanations provided earlier, Eqs. (20)−(28) appear 

straightforward when defining the nature of decision variables. 

 

3. Solution Approaches  

3.1. Simulation-based Optimization Technique 

 

Operating room scheduling indeed faces various complications, including the variability in 

procedure durations such as surgery and recovery times. For instance, in the specific hospital under 

study, surgeries performed by the 18th surgeon specializing in pediatric heart procedures typically 

last between 5 to 8 hours. However, the method outlined in the previous section assumes a fixed 

surgery time of approximately 4 hours for patients under this surgeon's care. To address this 

complexity, simulation-based optimization techniques can be employed. These methods utilize 

simulations to account for the variability in procedure durations and other pertinent factors. By 

incorporating such variability into the optimization process, more realistic and robust scheduling 

decisions can be made, leading to improved operational efficiency and better patient outcomes. In 

simulation-based optimization, two primary components are involved: the optimizer and the 

simulator. The optimizer, often implemented as a meta-engineering method, generates various 
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scenarios or solutions denoted as x. On the other hand, the simulator element computes the 

objective functions for each scenario x, providing an evaluation of the performance of each solution 

within the simulated environment by Figure 2. This iterative process allows for exploring different 

solution possibilities and their corresponding outcomes, ultimately aiding in selecting the most 

optimal solution. In this study, the optimizer and simulator elements are coded to interact easily with 

each other. This round-trip process continues until the optimizer stops. 

 

 

Fig. 2. The framework concept of simulation-based optimization. 

 

The multi-objective evolutionary algorithm (MOEA) and non-dominated sorting genetic algorithm 

II (NSGA-II) methods were employed as part of the evolutionary multi-objective optimization 

techniques for the optimizer element. In this method, having prior knowledge of the relationship 

between the objective functions is crucial to derive a set of meaningful solutions. Given the absence 

of detailed information regarding the interplay between the two defined objective functions (cost 

and waiting time), these methods prove to be suitable options for tackling the scheduling challenges 

in operating rooms. Their ability to explore a diverse range of solutions without presuming a specific 

relationship between objectives makes them well-suited for such complex optimization problems. 

On the other hand, considering the nature of meta-innovation, these methods can help us obtain 

appropriate answers reasonably. In addition, it is possible to use them alongside simulation.  

The NSGA-II algorithm operates as a multi-objective method, drawing from the principles of 

single-objective genetic algorithms. However, unlike in single-objective mode, where sorting the set 

of solutions involves straightforward comparison based on a single objective function value, multi-

objective mode presents a challenge. Here, solutions cannot be simply compared by a single number; 

instead, the vectors of objective functions associated with each solution must be compared. This 

necessitates a more nuanced approach to sorting, as the algorithm seeks to balance solutions that 

offer improvements across multiple objectives rather than optimizing a single objective alone. In 

NSGA-II, various answers are sorted according to two ranking criteria - determined by the rule of 

dominance of the answers - and the crowding distance of the answers. More explanations about 

these two criteria are given in the article. The MOEA method used in this research has a similar 

function, with the difference that the number of answers and the number of children is determined 

in each stage according to the number of insignificant answers. 

 

3.2. Matching Mathematical Model with Simulation 

 

With the explanations given in the previous sections, if the duration of surgery and recovery of 

patients in the designed operating room simulator element is considered definite, the simulator 

should calculate the objective functions similar to the mathematical model. Five scenarios were 

defined to ensure this issue, and the objective functions were calculated using the mathematical 

model and simulator. As Table 2 shows, in all these scenarios, these two approaches estimate the 

value of the objective functions in the same. 
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  Table 2 

  The scenario used for the mathematical model with the simulated system 

Scenarios 
Scenario features 

Response 
Objective function’s quality 

No. operating room No. of patients Mathematic model Simulation model 

1 10 42 No Surgery (30,350) (30,350) 

2 8 30 unjustified unjustified unjustified 

3 5 50 unjustified unjustified unjustified 

4 5 20 justified (20,40) (20,40) 

5 3 40 justified (25,95) (25,95) 

 

Now, we have examined the model's performance under five distinct scenarios: 

 

i. Scenario 1 − Resources operate according to a continuous work schedule, including 

weekends, from 8:00 to 17:00, with no intervals of unavailability. 

ii. Scenario 2 − Resources adhere to a work schedule, including weekends, from 8:00 to 

17:00, with no periods of unavailability. Patients arrive in batches at 8:00 a.m. each day 

throughout the planning horizon. 

iii. Scenario 3 − Resources adhere to a predefined work schedule, and each resource has 

designated periods of unavailability, as outlined in Table 2. Additionally, all resources take 

a one-hour break at noon. The quality objective function determines the duration of 

procedures. 

iv. Scenario 4 − Resources adhere to a work schedule with designated intervals of 

unavailability outlined in Table 2. Moreover, all resources incorporate a one-hour break 

at midday. Each patient is linked to a probability of not attending, which, interestingly, is 

randomly selected from a spectrum ranging between 0.5 and 1, adding a touch of 

unpredictability to the scheduling process. 

v. Scenario 5 − Table 2 indicates that resources operate based on a predetermined 

timetable, and every resource has a specific period when it is unavailable. All resources 

observe a one-hour halt at midday. Patients arrive in groups at the clinic at 8:00 every day. 

 

Significant insights can be gained by comparing the two methods of addressing the workshop 

work scheduling problem specifically, the exact solution derived from the mathematical model and 

the optimization approach based on simulation. Despite its precision in finding the optimal solution, 

it becomes evident that the mathematical model may need to be more efficient in handling large and 

complex problems. Conversely, simulation-based optimization, leveraging the adaptability of meta-

heuristic and simulation algorithms, offers viable solutions for large and intricate problems due to its 

flexibility. In a particular study, the exact solution of the mathematical model and simulation-based 

optimization were compared to solve the workshop work scheduling problem, which is comparatively 

simpler than our research problem. As mentioned earlier, when considering the likelihood of 

undergoing surgery and the duration of recuperation, the simulated component offers an equivalent 

depiction of the mathematical model of the issue. Furthermore, simulation offers a more precise 

depiction of the operating room by considering the intricacy of the system (including the likely 

duration of the processes). Consequently, the accuracy of the goal functions is enhanced when the 

mathematical framework solutions are evaluated using a simulator that performs a significant 

number of iterations. 
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4. Solution Approaches  

 

The aim of this study is to develop a structured patient schedule that minimizes deviations from 

patients' desired start times and reduces overall patient flow time within the system. Performance 

evaluation is based on calculating the average flow time and total deviations from desired start times. 

In all scenarios, if a patient arrives at each stage before the end of the work shift, service by the 

resource will commence and continue until completion, even if it exceeds the resource's work shift. 

Based on the data gathered from the investigated hospital for this study, 15 sample problems were 

generated following the guidelines outlined in Table 3. We established four levels for the number of 

available operating rooms. Within each level, the rate of patients added to the waiting list for each 

type of surgeon determined the patient influx at intervals of one, two, and three days. Consequently, 

the sample problems consist of four operating room levels and three distinct patient levels. 

 

  Table 3 

  Comparison of the solution time of three methods in seconds 

Test  

number 

Number of  

operating rooms 

Number of  

patients 

Mathematical  

model 
NSGA-II MOEA 

1 

1 

4 0.08 130 40 

2 6 0.09 70 15 

3 8 0.1 120 35 

4 

3 

14 0.7 450 130 

5 20 0.4 360 105 

6 50 7800 680 350 

7 

5 

18 0.3 340 100 

8 36 8200 620 270 

9 70 0.3 820 470 

10 

8 

33 4 660 185 

11 76 8100 800 300 

12 117 0.02 2000 900 

13 

10 

40 1.4 730 220 

14 85 3.6 900 360 

15 121 120 1900 1000 

 

We coded the mathematical model and optimization method based on simulation with NSGA-II 

and MOEA algorithms in MATLAB R2014b software and implemented it using a computer with the 

following specifications. Considering the dual objective problem, we solved the mathematical model 

once with the first and second objective functions. Then, if the algorithm for solving the mathematical 

model reached a reasonable solution in less than an hour, we solved the third problem using the 

following objective function: 

 

1 1 11 1 11 1 11 1 11 21 21 21 2

1 11 11 11 1
  ( )  ( )  ( )  ( )

O P OO P OO P OO P O

o o o o poo o o o poo o o o poo o o o po
o p oo p oo p oo p o

min T tar I idl xmin T tar I idl xmin T tar I idl xmin T tar I idl x
case casecase casecase casecase case= = == = == = == = =

    
× + − ×× + − ×× + − ×× + − ×    

    
      (29)

 

In relation case, it shows the interval of the first objective function, and case shows the interval 

of the second objective function in a colon, obtained by solving two problems (one considering the 

first objective function and the other with the second objective function). After solving the sample 

problems using all three methods, the answers were evaluated using simulation with 1000 

repetitions. The solution time and the quality of the non-existent answers obtained from the three 

methods can be seen in Table 3 and Table 4, respectively. 
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  Table 4 

  Comparing the quality of Pareto solutions obtained from three methods 

Sample problem Mathematical model NSGA-II MOEA 

1 (20,2) (20,2) (20,2) 

2 (30,5) (30,5) (30,5) 

3 (22,5) (22,5) (22,5) 

4 (50,4) (50,4) (50,4) 

5 (75,15) (70,15) (70,15) 

6 (80,30)(30,35)(20,35) (20,34)(22,35)(18,40) (30,35)(25,40) 

7 (160,10) (160,10) (160,10) 

8 (180,25)(20,110)(100,25) (25,115)(25,100)(28,120) (25,100)(25,110) 

9 (70,200) (50,60)(55,60)(55,54) (50,65)(50,60)(50,58) 

10 (20,250) (20,250) (20,250) 

11 (40,65) (55,200)(55,206)(57,190) (56,195)(56,200) 

12 (55,76) (88,75)(75,85)(84,80) (100,81)(97,77)(83,89) 

13 (40,87) (55,200)(55,206)(43,190) (56,195)(56,200) 

14 (76,65) (95,200)(56,206)(52,192) (56,75)(77,213) 

15 (87,95) (51,220)(55,206)(76,190) (86,143)(56,200) 

 

Additionally, the planning horizon duration aligns with the operational days of the clinic for 

patient service. Additionally, the cost ratio (CR) is derived by dividing the cost coefficient of total 

deviations from patients' preferred start days (α) by the cost coefficient of average patient flow time 

(β). For each scenario, we implement a meticulous beginning timetable, assuming that all patients 

will attend on their desired day of commencement. The planning horizon, set at one week, is a 

testament to our thoroughness. We also operate under the assumption of offline scheduling, a 

method that ensures we have comprehensive prior knowledge of our patient's information, such as 

their start day. 

Figure 3 illustrates the variation in departure from the initial day across different scenarios as the 

cost ratio (CR) varies from 1 to 0.05. A CR value of 1 prioritizes scheduling patients close to their 

preferred start day, while a CR of 0.05 indicates that shorter patient flow time is significantly more 

important than scheduling patients on their preferred start day. In scenario 1, even with a reduced 

CR of 0.05, there is no substantial increase in the deviation from the start day. This observation 

suggests that altering patient start days may not necessarily reduce their average flow time when 

resource availability is unconstrained. 

 

 

Fig. 3. Impact of cost ratio due to deviation from patient's preferred start day in various scenarios. 
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For example, Figure 4 shows the answers obtained from the three methods for sample problem 

10. The vertical axis in this diagram shows the number of patients who could not be operated on the 

scheduled day, and the horizontal axis shows the overhead cost function. Considering that the 

surgeons of some waiting patients are absent on the scheduled day, it is natural that many patients 

still need to undergo surgery. For this reason, in the best answer regarding the patient's expectation 

function, 22 patients were not operated. Apart from this issue, although the dimensions of this 

problem are smaller (5 rooms and 36 patients), optimization methods based on simulation generally 

perform better for this problem and have produced more unique answers in less time. As can be seen 

in Tables 4 and 5, optimization methods based on simulation can generally solve large problems in a 

reasonable time. In addition to producing solutions with a quality close to the mathematical model 

in small problems, they can also produce solutions with a quality close to the mathematical model. 

 

 
Fig. 4. The status of the answers obtained for the sample problem. 

 

Furthermore, in Table 4, one of the solutions identified as inferior by the optimization based on 

simulation using MOEA is deemed superior in simulation with 1000 repetitions. This discrepancy can 

be attributed to the inherent randomness involved in the simulation process. In this study, efforts 

were made to mitigate the impact of this factor on the final evaluation of solutions by increasing the 

number of repetitions. Consequently, while this discrepancy is not trivial, it underscores the 

importance of considering the stochastic nature of simulation-based optimization. However, given 

the critical importance of time in evaluating solutions within simulation-based optimization, the 

number of repetitions needed to be increased. Therefore, it is unsurprising that a superior solution 

may occasionally be incorrectly identified as inferior due to random evaluation. 

 

5. Discussion  

 

Evaluate the effectiveness of the simulation-based optimization model in managing the 

scheduling of operating room (OR) operations within the restrictions of restricted capacity. Examine 

the duration, computing resources, and overall efficiency of generating schedules in comparison to 

alternative methods like manual scheduling or heuristic-based techniques. Evaluate the cost-

effectiveness of adopting the simulation-based optimization model in comparison to other methods. 
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Assess the cost-benefit ratio by considering the starting costs, continuing maintenance charges, and 

the possible financial gains resulting from enhanced operational efficiency and patient outcomes. 

The study may need to examine the ethical implications of resource allocation decisions made 

through the simulation, which are essential to managing operating rooms in real-life situations. 

 

6. Conclusion and Future Directions  

 

The emergency department plays a crucial role within hospitals, engaging with numerous patients 

daily and facilitating various interactions among patients, staff, and resources. Its operational 

effectiveness and performance hinge on factors such as the quantity and allocation of doctors, 

nurses, beds, and other resources within the hospital. Considering the importance of reducing 

patients' waiting time and hospital costs, these two were considered the problem's objective 

functions. Then, to better understand the problem in a real hospital and evaluate the efficiency of 

mathematical modeling, the mathematical model of this problem was introduced. After that, the 

simulation-based optimization tool was built using two multi-objective evolutionary optimization 

methods, NSGA-II and MOEA algorithms. The only difference between the mathematical model and 

simulation-based optimization in the description of the operating room was the duration of the 

processes, which was considered a possibility in the simulation-based optimization. After ensuring 

the similar performance of the tools in the conditions where the duration of the processes was 

definite, their comparison was made. 

The findings were achieved under the condition that, in this study, only one aspect of the 

fundamental operating room was simulated compared to the mathematical model. While it is 

feasible to incorporate additional complexities from the operating room into the simulation without 

greatly diminishing its effectiveness, integrating these complexities into the mathematical model can 

only be done at the cost of slowing it down. A potential future recommendation could involve 

expanding our methodology to include the concept of the stay bed as a communal resource that 

multiple wards can utilize. Another potential avenue for research could involve integrating resource 

scheduling with simulated annealing. This could include developing an artificial intelligence machine 

learning system to assess the effectiveness of emergency departments under varying levels of 

staffing, using data from multiple simulation outputs. 
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