

Spectrum of Engineering and Management Sciences, Volume 2, Issue 1 (2024) 214-222

214

Spectrum of Engineering and
Management Sciences

Journal homepage: www.sems-journal.org
ISSN: 3009-3309

Optimized Task Deployment in Dynamic Voltage and Frequency
Scaling-Enabled Network-on-Chip Systems: Enhancing Energy
Efficiency and Real-Time Responsiveness

Kainat Irfan1, Mujeeb Ur Rehman1,*

1 Department of Computer Science, University of Management and Technology, Sadra Badra, Sialkot, Punjab, Pakistan

ARTICLE INFO ABSTRACT

Article history:
Received 7 November 2024
Received in revised form 18 November 2024
Accepted 8 December 2024
Available online 8 December 2024

In modern multi-design computing systems, which employ dynamic voltage
and frequency scaling (DVFS) and network-on-chip (NoC) communications,
the optimization of task deployment is precarious for enhancing overall
system performance. It introduces a comprehensive methodology that
integrates task allocation, scheduling, frequency management, redundancy
handling, and diverse data routing approaches. The aim is to optimize energy
intake, real-time responsiveness, and system heftiness. The system design
features a primary processing element associated with three slave computing
units (CUs) within a 2D mesh network, with the primary CU connected to a
co-processor for dependent task scheduling. This research also proposes
innovative algorithms for co-processor and real-time operating system
(RTOS) scheduling to reduce latency and boost power efficiency. These
methodologies aim to maximize job scheduling efficiency in RTOS
environments, thus refining overall system performance.

Keywords:
Multi-Core Design; Real-Time Operating
System; Network-on-Chip; Offloading;
Scheduling Efficiency.

1. Introduction

The landscape of computing has been reshaped by multicore architectures, which amalgamate

numerous processors onto a solitary chip, yielding platforms characterized by diminished supply
frequency, heightened data throughput, and augmented energy efficiency [1]. Recent strides in
nanoscale technologies have fostered a paradigm shift towards network-on-chips (NoCs) for
processor communication, supplanting traditional, non-scalable data buses [2].

The computational complexity at the processors is small in comparison to the overhead
associated with inter-processor communication over NoCs [3], which includes both temporal and
energy expenses [4]. The routing path and task mapping decisions determine this communication
overhead [5,6]. Data transmission is required when dependent tasks are assigned to different
processors, and manifold routing paths—like those found in mesh networks—introduce further
complexity inside NoCs. As indicated in Figure 1, the objective of the task deployment is energy

* Corresponding author.
E-mail address: mujeeb.rehman.pak@gmail.com

https://doi.org/10.31181/sems21202426i

https://doi.org/10.31181/sems21202426i

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

215

reduction under real-time limitations. To this end, we take into consideration both energy-oriented
and time-oriented pathways as viable possibilities for data transmission. Therefore, as essential
components of the task deployment process, inter-processor communication, task mapping, and
routing path selection must be carefully considered to maximize overall system performance.

Fig. 1. NOC-based architecture

Section 2 presents a review of related literature covering power-saving techniques, offloading

methodologies in RTOSs, and our specific use case. Section 3 outlines the problem statement and a
proposed solution framework. Section 4 provides methodologies and techniques. The conclusion is
in Section 5.

2. Literature Review

This section provides an overview of the current developments in workload distribution methods,

energy conservation methods, and task assignment methodologies for multi-core systems. In an
RTOS, the kernel's scheduling algorithm frequently evaluates the necessity for a context switch,
selects the subsequent execution task, and manages context storage, allowing application functions
to operate without synchronization, resource usage concerns, or function call ordering [7,8].
However, this approach may result in less predictable scheduling and increased system overhead,
particularly in control applications.

Decentralized task distribution techniques have proven instrumental in enhancing the scheduling
performance of real-time operating systems (RTOS), while concurrently, energy conservation
methods strive to minimize power consumption. Employing a NoC-based multi-core system
facilitates task parallelization, enabling the partitioning of applications into tasks that can be
executed simultaneously across computational units. To oversee energy conservation methods, a
specialized management unit dynamically monitors power usage, allocates tasks to computational
units, and ensures adherence to real-time and power constraints. Table 1 categorizes representative
works from the literature based on varied objectives.

Some studies have exclusively focused on offloading RTOS task scheduling onto adaptable
computing platforms, neglecting the integration of energy conservation methods. Conversely, others
have incorporated energy conservation methods within operating systems, with only one study [9]
integrating them alongside an open-source RTOS. Notably, none of these works have explored clock
gating for power optimization under the considered constraints, as delineated in Table 1.

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

216

 Table 1
 Comparison of task deployment
Reference Task allocation Multicore utilization Optimize solution

[1]
[2]
[9]

[10]
[11]

Proposed

Research indicates that offloading task scheduling from running processors can yield faster

scheduling and improved predictability, reducing runtime overhead and event response time. Task
scheduling can be offloaded to co-processors or hardware, with some work even replicating the
entire RTOS in hardware. When dedicated kernel services such as scheduling and inter-task
communication were offloaded to hardware, computing performance improved significantly.
Hardware-based task scheduling markedly diminishes context switch overhead, evidenced by latency
reductions.

Despite extensive research on power-saving techniques, few studies have explored their
integration with RTOSs. For instance, a low-power task scheduling approach under e EDF was
introduced in [12], resulting in a 27% energy conservation [13]. Similarly, a hypervisor architecture
for low-power applications, dynamically adjusting operating frequency and voltage to achieve a 33%
power reduction was proposed in [14]. However, these works primarily targeted Linux OS thus
leaving a gap in research focusing on RTOSs and power-saving techniques.

The growing data capacity in contemporary Internet of Things (IoT) and CPS applications raises
serious concerns about real-time embedded systems' memory power consumption [15]. Because
real-time systems require huge memory capacities and DRAM refresh operations, memory can
account for as much as 20-50% of CPU power, compared to around 10% in general-purpose systems.
A novel swap mechanism is suggested to lower memory power usage to address this problem. This
plan optimizes power reductions in both CPU and memory while making use of fast NVM storage. In
contrast to conventional real-time task models, the task model is expanded to take storage and
memory routes into consideration. This allows for the evaluation of the worst-case execution time
by taking into account the overlap of CPU and memory latency.

Field programmable gate arrays (FPGAs) can be used more easily thanks to operating systems for
RCOS, which abstract hardware specifics, use virtualization, and maintain shared resources [16]. They
improved performance and cut down on energy usage by enabling the simultaneous execution of
hardware functions on the same FPGA. Applications were able to take advantage of FPGA benefits
thanks to RCOS, which also addressed issues with restricted areas and configuration port
accessibility. Key ideas were explained, cutting-edge RCOS were emphasized, and future trends
including real-time processing specialization, low energy consumption, dependability, safety, and
security were noted.

Controlling peak power consumption is essential in contemporary multicore mixed-criticality
(MC) systems to avoid thermal problems that can compromise system timeliness and dependability
[17]. To minimize peak power usage during runtime, we provide an online peak power and thermal
management heuristic for multicore MC systems that make use of dynamic slack and per-cluster
dynamic voltage and frequency scaling (DVFS). Our method optimizes the system's peak power and
temperature by choosing the best task for slack assignment. While satisfying deadline limitations in
various criticality modes, experimental validation on the ODROID-XU3 platform with embedded real-

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

217

time benchmarks demonstrates up to a 5.25% decrease in system peak power and a 20.33%
reduction in maximum temperature compared to existing approaches.

Multiprocessor systems-on-chips (MPSoCs) based on the NoC technology are becoming more and
more common in modern embedded systems, especially for multimedia streaming applications [17].
DVFS in conjunction with task-level retiming has shown to be a successful method for dramatically
lowering energy consumption in these systems. An energy-aware scheduler for real-time streaming
applications in dissimilar NoC-MPSoCs is recommended in this research. R-CTG is a method that
pursues to reduce retiming latency while preserving energy economy. The scheduler, ALI-EBAD,
performs better in terms of energy efficiency than current job schedulers, according to experimental
results.

To minimize uncertainty propagation in cloud service environments, a work proposes a unique
scheduling architecture in response to these problems [18]. In this way, the architecture successfully
mitigates the effects of unpredictable task execution and data transfer durations by controlling the
count of workflow tasks that are directly waiting on each service instance. To dynamically modify
plans in response to uncertainties, the suggested uncertainty-aware online scheduling algorithm
(ROSA) combines proactive and reactive tactics. Employing simulation trials, ROSA outperforms five
common algorithms, obtaining notable gains in costs (up to 56%), variance (up to 70%), resource
utilization (up to 37%), and fairness (up to 37%).

A task scheduling policy that handled the coexistence of classic hard real-time jobs and
sporadically arriving interactive tasks in the context of smart industrial systems integrating IoT and
CPS technologies were presented in [18]. The policy is a two-phase process that used offline
scheduling based on evolutionary algorithms to meet strict real-time deadlines and "virtual real-time
tasks" for interactive work. Interactive tasks were scheduled online, and workloads were updated
regularly to accommodate changes. According to experimental data, energy consumption might be
reduced by 66.8% without compromising deadlines, allowing interactive tasks to have waiting
periods of less than three seconds.

Moreover, energy-efficient task scheduling is essential for MPSoC designs in contemporary
embedded systems [19]. We study this problem in Heterogeneous MPSoCs (HMPSoCs) based on NoC
equipped with DVFS. Our energy-efficient task scheduling heuristic (ETSH) algorithm improves state-
of-the-art methods by converting intra-data dependencies into inter-data dependencies represented
by directed acyclic graphs (DAGs). Findings from synthetic and real-world task graphs (TGs) show that
average energy efficiency can be as high as 38% and up to 20%, respectively, with and without coarse-
grained software pipelining.

Smart industrial systems increasingly offer flexible processes incorporating human interactions
with hard real-time operations, leading to varied task characteristics [18]. This is due to recent
breakthroughs in IoT and cyber-physical systems. This paper suggests a novel task scheduling
approach that uses two-phase scheduling and "virtual real-time tasks" to address this. Genetic
algorithms are used in offline scheduling to identify processor voltage levels, memory locations, and
to reserve virtual real-time jobs for interactive tasks. This helps to guarantee that hard real-time task
deadlines are fulfilled. Interactive jobs are managed by online scheduling during the virtual real-time
task periods. Offline scheduling should be updated periodically to account for changing interactive
workloads. The experimental findings show an average energy consumption decrease of 66.8%
without missing any deadlines and guaranteeing waiting times of less than three seconds for
interactive jobs.

In order to satisfy the performance requirements of multimedia streaming applications, the use
of MPSoCs based on NoC technology is expanding in contemporary embedded systems [16]. DVFS in
conjunction with task-level coarse-grained software pipelining effectively reduces MPSoC energy

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

218

usage at the cost of extra delay. In this study, we present an energy-aware scheduler on
heterogeneous NoC-MPSoCs based on voltage frequency island (VFI) for real-time streaming
applications. We present R-CTG, a technique that outperforms R-DAG by integrating re-timing with
DVFS to minimize latency without sacrificing energy efficiency. The experimental results show that
our scheduler, ALI-EBAD, has a higher energy efficiency than competing task schedulers.

Furthermore, task mapping is essential for load balancing and communication optimization in
multiprocessor sys-tem-on-a-chip software design. Compared to earlier approaches, the research
[20] suggests an ILP-based strategy that takes into account both characteristics while using fewer
variables. Additionally, it presents an enhanced ε-constraint method for flexibility and a task-
processor-cluster strategy to boost scalability. The efficacy of the suggested strategy is authorized by
experimental findings on a range of CPU systems.

Handling power consumption in real-time systems grants challenges, particularly concerning
processing time for retrieving and monitoring voltage regulators' standards. While power gating has
been discovered for power reduction, its effect on real-time capabilities remains unaddressed.
Incorporating power-saving policies into RTOSs necessitates thorough attention to DVFS as well as
clock gating, confirming an equilibrium between power optimization and real-time operational
proficiency.

3. Problem Statement and its Proposed Solution
3.1 Problem Description

In multi-core systems with NoC designs, task deployment gifts significant complications to real-

time performance, energy optimization, and system steadfastness. Multiple PEs operating in various
power states are repeatedly used in these systems. Fault tolerance methods such as clock gating,
task duplication, and DVFS are also mutual. The supervision of energy efficiency is made more
challenging by the substantial energy expenditure associated with data processing and inter-PE
communication. Vigorous power management familiarizes variability that compromises real-time
performance and can affect erratic scheduling and neglected deadlines. Moreover, to avoid data loss
and guarantee continuous operation, conserving system reliability obliges the use of effective fault
management procedures, such as task redundancy and duplication.

3.2 Solution Framework

A comprehensive solution framework that syndicates cutting-edge task management approaches

with energy-saving measures has been put forth to discourse these issues. In order to minimize
energy consumption while meeting real-time restrictions, the framework practices a mixed-integer
non-linear programming model for job allocation and scheduling. It takes into account computational
requirements, task dependencies, and communication configurations. Utilizing DVFS, voltage, and
frequency stages are vigorously adjusted to poise energy savings with performance essentials. Power
usage is diminished during phases of inactivity with clock gating. Task duplication through multiple
PEs advances reliability and guarantees that operations endure even in the event of hardware
disasters. Besides, task scheduling effectiveness is increased by offloading it to a devoted hardware
unit, and multipath data routing lessens NoC communication overhead. The framework's capacity to
increase energy efficiency, real-time sensitivity, and system reliability is authenticated by
experimental results.

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

219

4. Methodologies and Techniques

A multi-core system design is generated using the proposed methodology to look into ways to cut
power usage without bargaining real-time performance. The system involves NoC with four compute
units organized in a 2D-mesh topology and set in a master-slave formation, as shown in Figure 2.
Expending an offloading strategy for every PE advances context switching and restraints real-time
processes. While the principal PE is in control of voltage scaling, power supervision, and mapping
techniques, each auxiliary PE is in custody of clock gating and frequency scaling. The hardware
module that can be reconfigured is specified by the dotted outline.

One auxiliary way to increase system performance is to dispense task scheduling responsibilities
to a co-processor. Exhausting a NoC topology, this scheme connects three slave PEs and one master
PE to formulate a multi-core design. A voltage regulator is constructed into every slave PE to
vigorously adjust voltage ranks to boost power output. Each slave PE also has a router attached to
RTOS and a network interface processor (NIP) for task accomplishment.

Fig. 2. Hardware structure comprising of a main processing element associated with NOC

The system strategy, power consumption checking, and task entrustment to the slave PEs are

under the purview of the master PE. It is supplementary fixed to a co-processor, which knobs task
scheduling, to expand system efficiency. The master PE is offloaded and latency is lessened by the
co-processor, which is in control of scheduling mutually independent and dependent responsibilities.

In count, a job scheduling method is submitted for the master PE to enhance task distribution.
With the assistance of this algorithm, which allocates jobs intelligently based on dependencies,
communication configurations, and power measurements, the multi-core design's computing
resources are utilized efficiently.

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

220

4.1 Algorithms

By allocating task scheduling obligations to a specialized co-processor, the co-processor task

scheduling procedure benefits multi-core schemes activate more energy-efficiently. It also minimizes
the interrelated power consumption and declines the processing liability on the primary PEs.

Algorithm 1. Co-processor task scheduling

1 Output: A task list L allocated to every slave PE
2 Input: Task list T with priorities for every task tj in T for each task tj in T do
3 if parent(tj)=heta, then
4 Add tj to the allocated task list L (master) for each slave PE do
5 Send tj to the coprocessor
6 End
7 return L

Every task in the prioritized task list is examined by the algorithm as it operates. The coprocessor
is tasked with scheduling dependent tasks, whilst jobs without dependencies are assigned directly to
the master PE. By shifting the scheduling responsibilities to the co-processor, the computational
burden on the primary PEs is decreased and tasks can be assigned more effectively. Through task
scheduling burden distribution to the co-processor, the primary PEs can reduce power consumption
or even go into sleep mode.

In RTOS, Algorithm 2 optimizes task assignment in a multi-core system by considering both
computation and communication energy. Primarily, it prepares the output parameters and nature
tasks based on their enslavements and priority inside the RTOS. Then, it treasures PE with the lowest
energy requirement, computes task assignment, implementation time, and communication
parameters consequently. This algorithm guarantees efficient resource utilization and diminishes
energy consumption in multi-core methods running RTOS.

Algorithm 2. Task scheduling algorithm

1 Input: yi and hi for all i in M0
2 Output: xik, uij, and tsi for all i in M0
3 initialize O[i]=−1 for all i in M0, sort tasks in M0 according to their dependencies and priority

for each task i in M0, where hi=1 do
4 Set MinEng to infinity for each PE k in N do
5 Calculate ecompk and ecommk using CalculateCompEnergy and CalculateCommEnergy Set
6 Eng to ecompk + ecommk if Eng < MinEng then
7 Set MinEng to Eng Set O[i] to k
8 end
9 Calculate xik according to O[i]=k, calculate uij and tsi according to xik, tcommi, and tcompi

using CalculateTaskCompletionTime and CalculateTaskStartTime
10 end

5. Conclusions

The NOC-based multicore design has publicized noteworthy achievements in system

performance, latency fall, and energy efficiency with the accumulation of a co-processor for job
scheduling. From side to side, the transfer of task scheduling obligations to the co-processor, the
system proficiently condenses the overhead correlated to context switching and inter-processor
communication. This causes execution configurations that are more expectable and established,

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

221

exclusively for real-time applications. This work contributed by designing a diverse multi-core
architecture specifically tailored for real-time systems. It incorporated power-saving techniques and
offloading methodologies, including a co-processor to optimize scheduling and reduce latency.
Moreover, a task mapping strategy was introduced to efficiently allocate tasks to secondary
computational units, taking into account task dependencies and power consumption metrics while
ensuring real-time performance.

Funding
This study did not receive any external financial support.

Conflicts of Interest
The author declares no conflicts of interest.

References
[1] Akgün, G., Kolarov, B., Kalberlah, H., Wulf, C., Willig, M., et al. (2024). Exploration of Power-Savings on Multi-Core

Architectures with Offloaded Real-Time Operating System. IEEE Access, 12, 11294-11315.
https://doi.org/10.1109/ACCESS.2024.3354178.

[2] Mo, L., Zhou, Q., Kritikakou, A., & Liu, J. (2022). Energy efficient, real-time and reliable task deployment on noc-
based multicores with DVFS. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp.
1347-1352). IEEE. https://doi.org/10.23919/DATE54114.2022.9774667.

[3] Gomatheeshwari, B., Gopi, K., & Mathias, A. (2023). Low-complex resource mapping heuristics for mobile and iot
workloads on NoC-HMPSoC architecture. Microprocessors and Microsystems, 98, 104802.
https://doi.org/10.1016/j.micpro.2023.104802.

[4] Tariq, U.U., Wu, H., & Abd Ishak, S. (2020). Energy and memory-aware software pipelining streaming applications
on NoC-based MPSoCs. Future Generation Computer Systems, 111, 1-16.
https://doi.org/10.1016/j.future.2020.04.028.

[5] Amin, W., Hussain, F., Anjum, S., Khan, S., Baloch, N. K., Nain, Z., & Kim, S. W. (2020). Performance evaluation of
application mapping approaches for network-on-chip designs. IEEE Access, 8, 63607-63631.
https://doi.org/10.1109/ACCESS.2020.2982675.

[6] Anuradha, P., Majumder, P., Sivaraman, K., Vignesh, N. A., Jayakar, A., et al. (2024). Enhancing high-speed data
communications: Optimization of route controlling network on chip implementation. IEEE Access, 12, 123514-
123528. https://doi.org/10.1109/ACCESS.2024.3427808.

[7] Ismael, G.A., Salih, A.A., AL-Zebari, A., Omar, N., Merceedi, K.J., et al. (2021). Scheduling Algorithms
Implementation for Real Time Operating Systems: A Review. Asian Journal of Research in Computer Science, 11(4),
35-51.

[8] Haur, I., Béchennec, J.L., & Roux, O. H. (2021). Formal schedulability analysis based on multi-core RTOS model. In
Proceedings of the 29th International Conference on Real-Time Networks and Systems (pp. 216-225).
https://doi.org/10.1145/3453417.3453437.

[9] Han, J.J., Lin, M., Zhu, D., & Yang, L.T. (2014). Contention-aware energy management scheme for NoC-based
multicore real-time systems. IEEE Transactions on Parallel and Distributed Systems, 26(3), 691-701.
https://doi.org/10.1109/TPDS.2014.2307866.

[10] Li, D., & Wu, J. (2014). Minimizing energy consumption for frame-based tasks on heterogeneous multiprocessor
platforms. IEEE Transactions on Parallel and Distributed Systems, 26(3), 810-823.
https://doi.org/10.1109/TPDS.2014.2313338.

[11] Xie, G., Chen, Y., Xiao, X., Xu, C., Li, R., & Li, K. (2017). Energy-efficient fault-tolerant scheduling of reliable parallel
applications on heterogeneous distributed embedded systems. IEEE Transactions on Sustainable Computing, 3(3),
167-181. https://doi.org/10.1109/TSUSC.2017.2711362.

[12] Mo, L., Kritikakou, A., & Sentieys, O. (2018). Controllable QoS for imprecise computation tasks on DVFS multicores
with time and energy constraints. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(4), 708-
721. https://doi.org/10.1109/JETCAS.2018.2852005.

[13] Yoon, S., Park, H., Cho, K., & Bahn, H. (2022). Supporting swap in real-time task scheduling for unified power-saving
in CPU and memory. IEEE Access, 10, 3559-3570. https://doi.org/10.1109/ACCESS.2021.3140166.

Spectrum of Engineering and Management Sciences

Volume 2, Issue 1 (2024) 214-222

222

[14] Wulf, C., Willig, M., Akgün, G., Göhringer, D. (2021). Operating Systems for Reconfigurable Computing: Concepts
and Survey. In: Jahre, M., Göhringer, D., Millet, P. (eds) Towards Ubiquitous Low-power Image Processing
Platforms. Springer, Cham. https://doi.org/10.1007/978-3-030-53532-2_4.

[15] Ranjbar, B., Nguyen, T.D., Ejlali, A., & Kumar, A. (2020). Power-aware runtime scheduler for mixed-criticality
systems on multicore platform. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(10), 2009-2023. https://doi.org/10.1109/TCAD.2020.3033374.

[16] Tariq, U.U., Ali, H., Liu, L., Hardy, J., Kazim, M., & Ahmed, W. (2021). Energy-aware scheduling of streaming
applications on edge-devices in IoT-based healthcare. IEEE Transactions on Green Communications and
Networking, 5(2), 803-815. https://doi.org/10.1109/TGCN.2021.3056479.

[17] Chen, H., Zhu, X., Liu, G., & Pedrycz, W. (2018). Uncertainty-aware online scheduling for real-time workflows in
cloud service environment. IEEE Transactions on Services Computing, 14(4), 1167-1178.
https://doi.org/10.1109/TSC.2018.2866421.

[18] Yoo, S., Jo, Y., & Bahn, H. (2021). Integrated scheduling of real-time and interactive tasks for configurable industrial
systems. IEEE Transactions on Industrial Informatics, 18(1), 631-641. https://doi.org/10.1109/TII.2021.3067714.

[19] Ali, H., Tariq, U.U., Liu, L., Panneerselvam, J., & Zhai, X. (2019). Energy optimization of streaming applications in
IoT on NoC based heterogeneous MPSoCs using re-timing and DVFS. In 2019 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1297-1304). IEEE. https://doi.org/10.1109/SmartWorld-
UIC-ATC-SCALCOM-IOP-SCI.2019.00240.

[20] Huang, K., Zhang, X., Zheng, D., Yu, M., Jiang, X., et al. (2018). A scalable and adaptable ILP-based approach for
task mapping on MPSoC considering load balance and communication optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(9), 1744-1757.
https://doi.org/10.1109/TCAD.2018.2859400.

