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This paper considers a system of uncertain linear differential equations under
the Neutrosophic uncertain environment. Suppose the mutual dependency of
the dynamics of two variables is set on the mathematical manipulation under
the scenario where the available information regarding initial states is

Available online 2 February 2025 imprecise and is given in the Neutrosophic sense of uncertainty. The concept

of Neutrosophic differential equations can play a very effective role in this
regard. The present chapter is engaged with a brief introduction of the theory
of the system of Neutrosophic differential equations and the possible solution
approaches. Combining different cases of Neutrosophic differentiability and
the signs of the coefficients involved in the differential equations are taken for
the synergetic study of the theory. At the end of the theory, a few physical
phenomena are explored as possible applications of the proposed theory. For
a better understanding and reliability of the proposed theory, numerical
simulations and graphical visualizations are added to different pockets of this
paper.
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1. Introduction

In the real world, very frequently, the available data is not always crisp and precise in nature.
There must be some inherited ambiguity and uncertainty about the data, which causes real-world
decision making and mensuration to be imprecise. One of the celebrated mathematical objects
carrying the sense of uncertainty is the theory of fuzzy set and logic [1] introduced by Lotfi A. Zadeh
in 1965. Later, more developments in mathematical structures were done by the works of some
eminent researchers (see [2-4]). Later, the sense of fuzzy uncertainty was generalized by adding the
notion of non-belongingness promoting the Intuitionistic fuzzy set by Atanassov [5]. Smarandache
[6] contributed a notion of more generalized type of uncertainty introducing Neutrosophic
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philosophy. The measure of the membership, non-membership and indeterminacy grades is done
using Neutrosophic logic [7-9]. Upon the introduction of the theory, it gains major attention from
researchers working on the quantification and qualitative simulation of physical problems in
uncertain scenarios. In this scenario, a significant contribution on the establishment of the
Neutrosophic theory was included by Wang et al., [10]. An implementation of the Neutrosophic logic
on the shortest path problems are discussed by Kumar et al., [11]. Chakraborty et al., [12-13] supplied
many pentagonal Neutrosophic number structures. Some novel definitions of the Neutrosophic sets
(namely, Type 2 NS, Bipolar NS, Cylindrical NS, Spherical NS, Pythagorean NS, Cauchy NS) were
established in the recent works on this domain [14-18].

The theories of differential equations were utilized to capture the dynamical behavior of the
physical scenarios. In this context, the theory of fuzzy differential equations is rapidly grown as the
fundamental tool to deal with dynamical situations under uncertainties. The notion of the whereas
the fuzzy differential equation was first established by Keleva [19]. The concept of generalized
Hukuhara derivative was developed and utilized to demonstrate the fuzzy differential equations [20-
23]. Allahviranloo and Ahmadi [24] solved linear fuzzy differential equations using the Laplace
transformation approach. Ghanbari [25] solved the linear FDE by the Lagrange multiplier method
using the Hukuhara derivative. Recently, Rahaman et al., [26] contributed literature exploring the
Gaussian fuzzy number and its utilization on the solution of fuzzy difference equations. Also, the
fractional differential equations were utilized by Rahaman et al., [27] to describe the memory
sensitive study of inventory control problems in a crisp and fuzzy environment. Manna et al., [28] and
Garg et al., [29] solve the inventory model in the fuzzy environment on the applications on carbon
emitted production industry and scrap and defective items inspection in an loT-size, respectively.
Further, Pattnaik et al., [30] solve the control inventory model for the COVID-19 framework using
Neutrosophic uncertainty. Mondal and Roy [31] discussed the solution of a system of differential
equations with intuitionistic fuzzy number valued initial states. Smarandache [32] was the pioneer to
introduce the Neutrosophic derivative as an extension of the fuzzy derivative. A novel type of
Neutrosophic derivative, namely the granular derivative was formulated by Son et al., [33]. Very
recently, some researchers have initiated research works on the neutrosophic differential equations.
In this context, Sumanthi et al., [34] suggested a technique for resolving differential equations
involving Neutrosophic numbers and recommended an application of the proposed theory to the
bacteria culture model. Later, Sumanthi et al., [35] explored the solutions of the Neutrosophic
differential equation taking trapezoidal Neutrosophic numbers as the boundary conditions. Another
recent work on the second order boundary value problem by Moi et al., [36] in the Neutrosophic
arena is spotted in our literature survey.

In this present paper, a system of linear homogeneous differential equations is interpreted in a
Neutrosophic environment considering the generalized Neutrosophic derivative of the dependent
variables and Neutrosophic initial states. An application of the proposed theory on the arms race
model is discussed, taking the initial information in terms of the newly introduced Cauchy
Neutrosophic numbers.

The rest of the article is structured as follows: The preliminary theory regarding the Neutrosophic
number and Neutrosophic derivative is given in Section 2. In Section 3, the main theory for the
solution of the system of Neutrosophic differential equations is established. Further, the application
of the proposed theory is hinted in Section 4. Lastly, the conclusion over the whole paper is made in
Section 5.
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2. Preliminaries

Preliminaries of mathematical tools are briefly discussed in this section. The concept of the
Neutrosophic set [6] was first introduced by Professor Florentin Smarandache in 1998. Here, every
element of the set has three membership functions to describe the belongingness of the element in
the set more specifically than the fuzzy set [1]. Details discussion on the Neutrosophic set are as
follows:

Definition 1: [6] Consider Neutrosophic set Ay over the universal set of discourse Y is defined by
Ay = {< x, Tz, (), L, (X), F 37, (x) >:x € Y}, where Tz (x), I7 (x), Fz7,(x):Y - (0,1) are three
functions satisfying 07 < Tz (x) + 5, (x) + Fz, (x) < 3t forx €Y.

Here, Tz (x), 11, (x), F 17, (x) are called the membership degree of truthiness, indeterminacy and
falsity for all x € Y, respectively.

Definition 2: [13] Assume a neutrosophic set Ay over the universal set of discourse Y is called to
be single valued if x is a single valued independent variable. Then, Tz~ (x), I 17, (x), F 4, (x): X — [0,1]
will present the truth, indeterminacy and falsity membership functions, respectively.

Definition 3: [6] The (a, B, ¥) —cut of neutrosophic set Ay is defined by Ay(q5.), Where a, B,y €
[0,1] are fixed numbers such that « + f + y < 3 and is defined by

Anapy = (X € XiTa (0) = a, 147, (x) < B, F,(x) <y} (1)

Definition 4: [13] A Neutrosophic set Ay is said to be a neutrosophic number over a set of real
numbers (R) if it has the following properties:
(i) Ay is neutro-normal if there exists x, € R such that Ta(xo) =1 and Iz, (x0) =0 =

Fa (xo)-

(i) Ay is a convex set for the truth function (Tg;v); ie, Tz (Ax;+(1—MDxy) =
min{TAT\,(xJ:TA],(xz)}' forx;,x, € Rand A € [0,1].

(i) Ay is a concave set for the indeterminacy function (I/TTv)" e, Iz (Ax + (1 —D)xy) <
max{lgv(xl),lgv(xz)} ,forx;,x, € Rand A € [0,1].

(iv) Ay is a concave set for the falsity function (Fiﬁv)" e, Fzm(Ax +(1—Dxy) <
max{F;;v (x1), F (xz)} ,forx;,x, € Rand A € [0,1].

If the conditions (ii)-(iv) are satisfied, then the Neutrosophic set (217\,) is called neutro-convex.
Definition 5: [13] If Ay is a Neutrosophic number, then (a, 8,¥)-cut is given by ANapy) =

{[A1(2), Az ()], [A1(B), A3 (B)], [A1 (¥), Az (¥)1}, where

() 250,229 <o, vae[01], 4;(1) < 4,(1)

da
(ii) dAdl[gﬁ) <0, d“;f) >0, VB €[0,1], AL(0) < A,(0)
(i) 2 <0,“2 > 0,vy €[0,1], 47(0) < 45(0)

witha +f +y < 3.
Definition 6: [18] A symmetrical Bell-shaped Neutrosophic number (BNN) is denoted by By and
describe as
By =< (ug; vi; w), (ug; va; w), (uz; va; w) > (2)
where the truth, indeterminacy and falsity membership functions are denoted by Tz, (x), I 57, (x)
and F g (x), respectively and defined as the following
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( TET\](X) = | 21]1

) Igjv(x):l— |x W2v2 (3)
FET\](X) = 1 - | 21]3

\

where —0 < x < © and u;,v;,w (i = 1,2,3) are the three variables. Normally, v; be the
parameters are positive for i = 1,2,3. Further, w be another parameter locates at the centre of the
curve and v; be the parameters control the slopes at the truth, indeterminacy and falsity membership
functions crossover points, respectively, fori = 1,2,3.

If we consider the value of v; = 1 for all i = 1,2,3, then the above definition of the bell-shaped
Neutrosophic number is used to get the following definition.

Definition 7: [18] A symmetrical Cauchy neutrosophic number (CNN) is denoted by

Cn =< (ugp;w), (ug; w), (ugz; w) > (4)

is described by the truth, indeterminacy and falsity membership functions T# (x), I (x) and

F &, (x), respectively and defined as the following:

Te () =—

xX—w 2
1+(5)
1
() =1- () (5)
uz
1
Fe(x)=1-——15
L (52
where x € (—o0, ).
Definition 8: [18] The parametric form of symmetrical CNN is described by
Cn =< (ug;w), (ug; w), (uz; w) > (6)
is given by Ty ueconp pyetony = | (Cri(@), €, (@) (C1,(8), 6, (B)); (Cr, (1), Cr, (1) )], where

Cr(a) =w—1uy 1

1-a
Cr.(a) =w+uy —

@ =w-w (L
Clr(ﬁ) =w+t uz\/g
CFI(V) =w-= us\/f_y
kCFr(V) =w+ us\/g

Definition 9: [36] Consider a Neutrosophic valued function (f) define as f:1 = N and x, € I.
Then, the generalized Neutrosophic derivative of f(x) at x, is denoted by f'(x,) and defined as
follows

(i) fqia = [min {fT’L(Xoi a),fT’R(xoi a)},max{ﬂL(xo; a)’fT’R(xoi 0‘)}] iffT'L(xoia),fT’R(xoi a)

exist.

(7)
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(i) 1(1’,; = [min {fI’L(xoiﬁ)'fI;(xoiﬁ)}»maX{fI’L(on,B)'fI’R(xoiﬁ)}] if 7, (x0; B, fii (xo; B)
exist.

(iii) fF [mln {fFL(xo'V) fFR(xo»V)} max{fFL(xo,y) fFR(XO'y)}] 'ffFL(XO'Y) fFR(xOrV)
exist.

f'(x) is said to be of type | derivative if

[f (xo)] (a.By) = {[fTL(xo:a) fTR(xo:a)] [fIL(xO:ﬁ) fIR(xO!ﬁ)] [fFL(xo'Y) fFR(xO')/)]} (8)
And of type Il derivative if

[f (xo)] (aBy) = {[fTR(xOJa) fTL(xO'a)] [fIR(xOrﬁ) fIL(XO'ﬁ)] [fFR(XO:V) fFL(xo»V)]} (9)

3. System of linear homogenous Neutrosophic Differential Equations

Consider the system of the linear homogeneous differential equation of the form

Z—z = Az

A (10)
dx y

In the Equation (10), A, B are constants. The initial conditions are given by
{y(xo) = Yo

z(xo) = 2 (1)

The system represented by Equation (10) and Equation (11) is called a system of the homogenous
linear Neutrosophic differential equation when the initial conditions given by Equation (11) are
considered to be the Neutrosophic numbers.

Suppose the initial values are y(x,) = y, and z(x,) = z, of Neutrosophic numbers and are
denoted by

Ineu(0) = [(}’OL(Q)»YOR(“)); (y(’)L(.B)'y(’)R(,B)); (}’(’)’L(Y):Y(’)’R (Y))] (12)
and
Zneu(0) = [(ZOL(a)»ZOR (a)); (Z(,)L(:B)'Z(,)R (ﬁ))’ (Z(’),L()/)' Z(’)’R(V))] (13)
Then Equations (10) and (11) can be represented as,
dYNeu =
—— =AZpey
dme _ o - (14)
“dx B Jneu
with the initial condition
yNeu(xO) = Yo neu
{ZNeu(xO) = Zo Neu (3]
Rewriting the systems given by Equation (14) in the (a, 8,¥) —cut representation,
d
a [(yL(xﬁ (X), YR (x' O()); (YI’_.(X' B)' YI,Q(X' B)): (YI,_,, (X, Y)' YI,:{, (X' Y))]
= Al (2, (x, ), 2 (x, ®); (z1,(x, B), zr (%, B)); (2 (%, V), zR (%, V)] (16)
d
P (2, (x, 0), zg (x, 0)); (21,(%, B), zr (%, B)); (21 (%, V), 2R (%, V)]
= B[(y,(x, @), yr (x, ©)); (y1.x B, yr (%, B)); (y1, (%, V), yR (%, V)] (17)

Case 1: When the coefficientsAand Bare positive numbers. We consider two distinct subcases
under this instance in the manner described below:
Subcase 1.1: When yy.,and Zy,,, are of type | differentiable.
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Then, from Equations (16) and (17), we get,

(L) Ld(j:’a) = Az, (x, @)
LR ’;(;C’a) = Azp(x, @)
dJIL(x B) = Azl (x, B) a8
—dyz(jﬁ) Azp(x, B)
DLED = 4z} (x,7)
kd)’;?;ixﬂ/) — AZ}I?I (x’ )/)
and
(0 g
1550 g, e
LD — By, (x, )
) dzR(xﬁ) R( ﬁ) (19)
dx
—dziix'y) =By, (x,y)
\—dzé;ix’y) = Byg (x,7)
Then,
% = ABy,;(x, @) (20)
which gives y; (x, @) = c;eV4B* + c,e~V4BX and then, using the initial conditions we get
700 =@ + @+ @ - fa@|ems 1)
and
At =12 {yom + A ZOL(@} -t e {yOL(a) iE ZOL(a)} w ()
Similarly,
yr(x, @) = ;{yom + f (a)} eVABx 4 ;{yom - \@ZOR<a)}e-Wx (23)
zg(x, @) = E\E{YOR(Q) + \EZOR (“)} eVABY — %\/%{YOR (a) — \/%ZOR (“)} e VAR (24)
yi(x, B) = {yOL(,B) + IZOL(B)} ABX %{y(I)L(ﬁ) - \/gz('u(ﬁ)} e VAR (25)
A =1t {m(ﬁ) + A ZOL(ﬁ)} i _ ;ﬁ{yw) - \/ézamﬁ)} e (g
Vi B) = ;{yaR @)+ (b (ﬁ)} A ;{yw) - et (ﬁ)} eV 27)
a4 h) =3 B+ Banwlem -2 Elio - Bawplerm o
v (y) = ;{yom + ZOL(y)} A ;{yaz - 2 zom)} (29)
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2 (y) =L Jé{ym) + zom} -1 \E{ym) - zom)}
yr (x,y) = %{yé’R )+ f ZOR(V)} ABX + %{yé’R ) - \f ZoR ()/)} ABx
e =2 Bl + fanlem -1 Blim - Bann)e

Subcase 1.2: Whenyy,and Zy,,, are of type |l differentiable.
Then, from the Equations (16) and (17) we get,

( dyR(x'a) — AZL (x’ a)

dx
dy(x,a)
% = Azz(x, @)
dyp(x,B) _
DB = 471 (x, )

d ,(! ) !
nd—;ﬁ: AZR(X,ﬁ)

dY},?I (x,y) — AZZ(X V)

dx
k% = Azg (x,y)
and
(22D = By, (x,a)
D = Bya(x,@)
dzRp) _ By, (x,
Loy o
———=Byr(x,8)
dZRd—;m = By, (x,y)
t% = By (x,v)
Then,

2
yrxa@) _ AByg(x, )

dx?
which gives yg (x, @) = czeV4Bt + ¢,e~VABt and then, using the initial conditions we get

Ya(x, @) = ;{yom + J%ZOL(a)} A ;{yOR (@) - \/%ZOL(@} VBt

and

(e = J%{ym(a) n \/éz@(oo} AL \/é{yo;z(a) - \/éz(u(a)} A

Similarly,

i a) =1 {yOL(a)+\f z0R<a)} {yOL(a) iE ZOR(a)}
e =4 2 {yOL(a>+\f ZOR(oo} L P {m(@ B ZOR(a)}

Yo ) = ;{y(m(ﬁ) + J%z(u(ﬁ)} VB ;{yaR ® - \/ézw)}e-mx

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

99



Spectrum of Engineering and Management Sciences
Volume 3, Issue 1 (2025) 93-109

) =2 Bl + e -2 Blig - famlem )

v, (x, B) = %{Y(I)L(,B) + \/%Z(’)R(.B)} eVAPY + %{y(u(ﬁ) - \/%Z(’m(ﬁ)}e‘ ABx (42)
246, ) = \E{y{m(ﬁ) + J%zzm(m}e e _ 1 \E{y(n(ﬁ) - jézzm(ﬁ)}e— w3
vy (x,y>=§{ya;e<y)+f zm)} ABM%{y&(y)—f zoLm} (a4)
2 (ey) = \E{ymm + zm)} -t o {m(y) iE zm)} B (ag)
yi () =§{yOL<y) + z0R<y>}eWx +§{yaz<y> - ZOR@)} (a6)

zg (x,y)=§\/§{ym(y)+\f ZOR(V)} AB’“—-I { L(r) — \f ZOR()/)} ABx (47)

Case 2: When the coefficients A and B are negative numbers. We consider two distinct subcases
under this instance in the manner described below:

Subcase 2.1: When Jy,and Zy,,, are of type | differentiable.

Then, from the Equations (16) and (17) we get,

dy(x,a)
(% = Azz(x, @)
dyr(x,a)
DD — 2, ()
dyL(xﬁ) AZR(x B)
1 (48)
dyR(x B) _
T ax Az (x,B)
dyr (xy)
DLV = Azy(x,y)
dy” (x,y) "
— o = Az (%)
and
rdzp(x,a)
dox - ByR (x, CZ)
dzp(x,a)
—0 = Byni(x, @)
HED = By (x, B)
) dx (49)
dz}""(xvﬁ) —_ !
dx - ByL(x' ﬁ)
dZII,I (x,y) _ "
dx - ByR (-x) V)
d II( : )
\ ZRdxxy = BJ’i’(X,Y)
Then,
2
2T = ABy,(x, ) (50)
which gives y; (x, @) = csg eVABt | c6e‘mt and then, using the initial conditions, we get
yi(x,a) = ‘{YOL(CZ) + IZOR(a)} VABX 4 2 {}’OL(Q) IZOR(Q)} ABx (51)
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ZR(x,a)=%f{y0L(a)+IZOR(a)} ABx _f{yOL(a) IZOR(a)} ABx

Similarly,

yr(x,a) = %{yOR (a) + \/éZOL(a)} VAB {J’OR(“) \/éZOL(a)}e_mt

z,(x, ) = E\E{YOR(Q) +\/§ZOL(6{)} VABt _ ‘I{YOR(“) \/éZOL(a)}e_mt

000 =00 + [raia® e 4 25000 - [t

240f) =1 5 {Mﬁﬂf m(ﬁ)} -t o {m(ﬁ) \/ézaRw)}e-mx

VG B) = {yOR<ﬁ)+\f ZOL(ﬁ)} ﬁx+§{yaR(ﬁ)—\Ezz)L(ﬁ>}e-

0 =3 B+ fao)em -1 Bl - fiam)e-
i (x,y)=§{y&(y>+f ZOR(y)} {yom iE z0R<y>}
i ) =4 Bl + ) e -2 Bl - am]e-
YR (x,y)=§{ya;q(y>+f zom} ABX+§{ya'R<y>—f zm)}
2 (x,y)=§J§{ya'R(y>+f ZOL(y)} et e {yom B zom)} A

Subcase 2.2: When yy.,and Zy,,, are of type Il differentiable.
Then, from the Equations (16) and (17) we get,

dyr(x,a)
(%ZAZR(X,OI)

dyL(x,)
%ZAZL(X,CZ)

dYII?(xJﬁ) _ l;
DEEE) _ 74 (x, )

dyy (x, ﬁ)

dYR (x,y) "
—dx = Azg (x,y)

dyr (xy) /
o = Az (%)

and

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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dzp(x,a)
(=£== = Byp(x, @)

dzp(x,a)

dx =ByL(xia)

dzp(x,B) _
LD = Byp(x, B)

{ 2 (x (64)
SLER = By (x,8)
O = Byt (x,y)
k—dzi;ix'w By (x,y)
Then,
dZny(;,a) = AByg(x, @) (65)
which gives yg(x, @) = c,eVAB* + cge~VABX and then, using the initial conditions we get
Ya(x, @) = ;{yom + J%ZOR(w}e e 4 ;{yORw) - J§ZOR<a>}e— (66)
and
zp(x, a) = %I{%R(“) + IZOR (“)} ABx %\/é{yOR (a) — \/éZOR (a)} e ~VABx (67)
Similarly,
yu e, @) = —{m(a) + 8 z0L<a)} a4 1 {yOL(oo iE ZOL(a)} (68)
z,(x, @) =%\f{ OL(a)+\fZOL(a)} ABx—‘f{ or(@) — fZOL(a)} ABx (69)
yi(x, ) = ;{y(mw) + J%z(m(ﬁ)} A ;{y(m B - \/ézaRw)} VAT (70)
2y, B) = L \E{m(ﬁ) " \/%Z(m(ﬁ)} A _ L Hy B - \/ézaRw)} e ()
yiCx, ) = ;{yaL(m + J%z(u(ﬁ)} A ;{y(n(ﬁ) - \/ézw)}e-mx 72)
AGp =1 2 {m(ﬁ) + A ZOL(ﬁ)} -1 \/é{yaL(ﬁ) - \/éz(’m(ﬁ)}e‘mx 73)
vy (p) = ;{yOR 0+ 2 z0R<y>} A ;{ya'R 0 - Js% (y)} (74)
2 o) = \F{y 0+ 2 z0R<y>} w1 e {yOR(y) 2ot (y)} (75
yi (y) = ;{ym(y) + zom} A ;{y& - 2 ZOL(y)} (76)
2 () = ;Jé{mm + A zom} L [P {ym) iE ZOL(y)} o (7)
4. Application

Consider the arm race model [31] in a Neutrosophic arena. Suppose two conflicting nations A and
B are there with their capacities of iy, (t) and Zy,,, (t) number armaments respectively at time t.
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One nation increases their armaments in a competitive proportion with another nation to defend
itself from the possible aggression of the opponent. Now, the initial information about the strengths
of two opponent countries may be imprecise to each other and they can try to predict it using the
philosophy of neutrosophy. When the available information is considered about a value in bell-
shaped generalized sense, the Cauchy neutrosophic number can fulfill the purposes. Consequently,
the following system of Neutrosophic linear homogeneous differential equations can be applied to
stand for the system.

Ineu(t)

dt =M ZNeu(t)
dZyeu(t) ~ (78)
P N yNeu(t)
with the initial conditions
yNeu(O) = Yo neu
. . 79
{ZNeu(O) = Zg Neu (79)

In our numerical simulation, we assume that the efficiency to increase their armaments are equal
for both nations. So, let M = N = 0.5.

Also, let J new (0) =< (1;40), (1.5; 40), (2; 40) and Z; yeu (0) =< (1;0); (1.5,0), (2,0) > be
two Cauchy Neutrosohphic numbers. Figure 1 and Figure 2 visualize the Cauchy Neutrosophic
numbers ¥ yew (0) and Z yey (0), respectively.

L | [ [ [ )
34 36 38 40 42 44 46

Fig. 1. Initial armament J yy (0) of the nation A
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I [ [
8 6 -4

Fig. 2. Initial armament Z; ., (0) of the nation B

The parametric forms of the Cauchy neutrosophic numbers are given by

Freu(©) = | Gou(@), yor(@); (y6.(B), ¥0r B)) ; (6.1, ¥6r 1) )|

and

Znew(0) = [(ZOL(‘Z)»ZOR (a))i (Z(,)L(:B)'Z(I)R (,3)); (Z(I)IL(Y):Z(IJIR (Y))]

where

[
-2 0

1-a

.
Yor(a) = 40 — e

Yor(@) = 40 + /%“

yo.(B) = 40 - 15 [

yor(B) = 40 + 1.5 |2

1-B

you(r) =40-2 |-

and

" — r
\ Yor(¥) =40 + 2 ’1_)/

(80)

(81)

(82)
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( 1-a

Zop (@) = — o

1-a

zog(a) = R

Z(;L(ﬁ) =-15 %

7P =15 [ L
7 =25

" =2 |
L Zor(¥) 1y

(83)

Then, taking the differentiability of yy.,and Zy., are of type |, the solution of the system given

by Equation (78) is obtained as

( —_—
yu(t a) = (20 - /%) et + 20e705¢
z,(t,a) = <20 — ’%) 205t _ 205t
yr(t, @) = (20 + /%) e%>t + 20e705¢

Vit B) = (20 +15 /%) S05E 4 9005t
( b

1-p

z] (t,y) = (2() — 2 [X) 05t _ 20e-05t

[uny

<
N~ N N

yr (6y) = (20 +2 =) 05t + 20e 05t

2
2

-
1-y

eO.St _ 206_0'5t

N——

i @) = (2042

(84)

Then, after 5 years of the arm race, components of the parametric representation of the

uncertain armaments of nation A are represented in Table 1 for different levels of aspirations.
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Table 1
Armaments of the nation A after 5 years
apy vt a) Ye(t, a) y. (& B) Yr(t,B) v (&) yr (&,7)
0 —00 400 245.2916 245.2916 245.29158 245.2916
0.1 208.744098 281.83906 239.2003 251.3828 237.16992 253.4132
0.2 220.926592 269.65657 236.154 254.4285 233.10909 257.4741
0.3 226.682513 263.900647 233.3286 257.2546 229.34095 261.2422
04 230.3711329 260.212027 230.3711 260.212 225.39765 265.1855
0.5 233.109086 257.474074 227.0178 263.5653 220.92659 269.6566
0.6 235.3446153 255.238545 222.9109 267.6723 215.45069 275.1325
0.7 237.3162656 253.266894 217.378 273.2052 208.07345 282.5097
0.8 239.200333 251.382827 208.7441 281.8391 196.5616 294.0216
0.9 241.2307486 249.352411 190.47036 300.1128 172.19662 318.3865
1 245.29158 245.29158 —0o0 400 —00 400

The tabular data from Table 1 can be put into the graphical representation in Figure 3, which can
interpret the situation more precisely.

160

l
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240 260
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280
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300 320

Fig. 3. Armaments Jy., (t) of the nation A after 5 years
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Then, after 5 years of the arm race, components of the parametric representation of the
uncertain armaments of nation B are represented in Table 2 for different levels of aspirations.
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Table 2
Armaments of the nation B after 5 years
apBy 7,(t, @) 2g(t, @) 7, (t,B) 2 (t, B) z (t,y) zg (t,y)
0 —00 400 242.0082 242.0082 242.0082 242.0082
0.1 205.460698 278.55566 235.9169 248.0994 233.8865 250.1298
0.2 217.643192 266.37317 232.8713 251.1451 229.8257 254.1907
0.3 223.3991131 260.61725 230.0452 253.9712 226.0576 257.9588
04 227.087733 256.92863 227.0877 256.9286 222.1143 261.9021
0.5 229.825686 254.19067 223.7344 260.2819 217.6432 266.3732
0.6 232.0612153 251.95514 219.6275 264.3889 212.1673 271.8491
0.7 234.0328656 249.98349 214.0946 269.9218 204.79 279.2263
0.8 235.916933 248.09943 205.4607 278.5557 193.2782 290.7382
0.9 237.9473487 246.06901 187.187 296.8294 168.91322 315.1031
1 242.00818 242.00818 —0o0 +o0 —00 +00

The tabular data from Table 2 can be put into the graphical representation in Figure 4 which can
interpretate the situation more precisely.

L
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Fig. 4. Armaments Zy,, (t) of the nation B after 5 years
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Remark 1: The bell-shaped nature of the initial neutrosophic information is preserved in the

solution also.

5. Conclusion

In this paper, a system of neutrosophic linear homogenous differential equations is analyzed in a
neutrosophic environment. Here, the initial states are taken as the neutrosophic numbers and the
manifestation is done based on the generalized differentiability of the neutrosophic valued functions.
From our discussion in this chapter, it is perceived that the theory of system of differential equations
in crisp and fuzzy environment can be easily extended into the domain of neutrosophic uncertainty
which is more specific and structured sense of uncertainty. Also, the arms race phenomenon

107



Spectrum of Engineering and Management Sciences
Volume 3, Issue 1 (2025) 93-109

between two conflicting nations is aptly depicted in this chapter with Cauchy’s neutrosophic numbers
as the information about the initial armaments. In future, more theories on the uncertain system of
differential equations can be developed in this direction. Also, the mathematical modelling of real
physical phenomena as an application of the proposed theory may be a matter of future challenges
in this context.
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