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This paper considers a system of uncertain linear differential equations under 
the Neutrosophic uncertain environment. Suppose the mutual dependency of 
the dynamics of two variables is set on the mathematical manipulation under 
the scenario where the available information regarding initial states is 
imprecise and is given in the Neutrosophic sense of uncertainty.  The concept 
of Neutrosophic differential equations can play a very effective role in this 
regard. The present chapter is engaged with a brief introduction of the theory 
of the system of Neutrosophic differential equations and the possible solution 
approaches. Combining different cases of Neutrosophic differentiability and 
the signs of the coefficients involved in the differential equations are taken for 
the synergetic study of the theory. At the end of the theory, a few physical 
phenomena are explored as possible applications of the proposed theory. For 
a better understanding and reliability of the proposed theory, numerical 
simulations and graphical visualizations are added to different pockets of this 
paper. 

 
Keywords:  
System of differential equation; 
Uncertainty; Neutrosophic number; 
Neutrosophic equation; Neutrosophic 
derivative. 

 

 
1. Introduction 
 

In the real world, very frequently, the available data is not always crisp and precise in nature. 
There must be some inherited ambiguity and uncertainty about the data, which causes real-world 
decision making and mensuration to be imprecise. One of the celebrated mathematical objects 
carrying the sense of uncertainty is the theory of fuzzy set and logic [1] introduced by Lotfi A. Zadeh 
in 1965. Later, more developments in mathematical structures were done by the works of some 
eminent researchers (see [2-4]). Later, the sense of fuzzy uncertainty was generalized by adding the 
notion of non-belongingness promoting the Intuitionistic fuzzy set by Atanassov [5]. Smarandache 
[6] contributed a notion of more generalized type of uncertainty introducing Neutrosophic 
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philosophy. The measure of the membership, non-membership and indeterminacy grades is done 
using Neutrosophic logic [7-9]. Upon the introduction of the theory, it gains major attention from 
researchers working on the quantification and qualitative simulation of physical problems in 
uncertain scenarios. In this scenario, a significant contribution on the establishment of the 
Neutrosophic theory was included by Wang et al., [10]. An implementation of the Neutrosophic logic 
on the shortest path problems are discussed by Kumar et al., [11]. Chakraborty et al., [12-13] supplied 
many pentagonal Neutrosophic number structures. Some novel definitions of the Neutrosophic sets 
(namely, Type 2 NS, Bipolar NS, Cylindrical NS, Spherical NS, Pythagorean NS, Cauchy NS) were 
established in the recent works on this domain [14-18].  

The theories of differential equations were utilized to capture the dynamical behavior of the 
physical scenarios. In this context, the theory of fuzzy differential equations is rapidly grown as the 
fundamental tool to deal with dynamical situations under uncertainties. The notion of the whereas 
the fuzzy differential equation was first established by Keleva [19]. The concept of generalized 
Hukuhara derivative was developed and utilized to demonstrate the fuzzy differential equations [20-
23]. Allahviranloo and Ahmadi [24] solved linear fuzzy differential equations using the Laplace 
transformation approach. Ghanbari [25] solved the linear FDE by the Lagrange multiplier method 
using the Hukuhara derivative. Recently, Rahaman et al., [26] contributed literature exploring the 
Gaussian fuzzy number and its utilization on the solution of fuzzy difference equations. Also, the 
fractional differential equations were utilized by Rahaman et al., [27] to describe the memory 
sensitive study of inventory control problems in a crisp and fuzzy environment. Manna et al., [28] and 
Garg et al., [29] solve the inventory model in the fuzzy environment on the applications on carbon 
emitted production industry and scrap and defective items inspection in an IoT-size, respectively. 
Further, Pattnaik et al., [30] solve the control inventory model for the COVID-19 framework using 
Neutrosophic uncertainty. Mondal and Roy [31] discussed the solution of a system of differential 
equations with intuitionistic fuzzy number valued initial states. Smarandache [32] was the pioneer to 
introduce the Neutrosophic derivative as an extension of the fuzzy derivative. A novel type of 
Neutrosophic derivative, namely the granular derivative was formulated by Son et al., [33]. Very 
recently, some researchers have initiated research works on the neutrosophic differential equations. 
In this context, Sumanthi et al., [34] suggested a technique for resolving differential equations 
involving Neutrosophic numbers and recommended an application of the proposed theory to the 
bacteria culture model. Later, Sumanthi et al., [35] explored the solutions of the Neutrosophic 
differential equation taking trapezoidal Neutrosophic numbers as the boundary conditions. Another 
recent work on the second order boundary value problem by Moi et al., [36] in the Neutrosophic 
arena is spotted in our literature survey.   

In this present paper, a system of linear homogeneous differential equations is interpreted in a 
Neutrosophic environment considering the generalized Neutrosophic derivative of the dependent 
variables and Neutrosophic initial states. An application of the proposed theory on the arms race 
model is discussed, taking the initial information in terms of the newly introduced Cauchy 
Neutrosophic numbers.  

The rest of the article is structured as follows: The preliminary theory regarding the Neutrosophic 
number and Neutrosophic derivative is given in Section 2. In Section 3, the main theory for the 
solution of the system of Neutrosophic differential equations is established. Further, the application 
of the proposed theory is hinted in Section 4. Lastly, the conclusion over the whole paper is made in 
Section 5.  
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2. Preliminaries  
 
Preliminaries of mathematical tools are briefly discussed in this section. The concept of the 

Neutrosophic set [6] was first introduced by Professor Florentin Smarandache in 1998. Here, every 
element of the set has three membership functions to describe the belongingness of the element in 
the set more specifically than the fuzzy set [1]. Details discussion on the Neutrosophic set are as 
follows:  

Definition 1: [6] Consider Neutrosophic set 𝐴�̃� over the universal set of discourse 𝑌 is defined by 

𝐴�̃� = {< 𝑥, 𝑇𝐴�̃�(𝑥), 𝐼𝐴�̃�(𝑥), 𝐹𝐴�̃�(𝑥) >: 𝑥 ∈ 𝑌}, where 𝑇𝐴�̃�(𝑥), 𝐼𝐴�̃�(𝑥), 𝐹𝐴�̃�(𝑥): 𝑌 → (0,1) are three 

functions satisfying 0− ≤ 𝑇𝐴�̃�(𝑥) + 𝐼𝐴�̃�(𝑥) + 𝐹𝐴�̃�(𝑥) ≤ 3+ for 𝑥 ∈ 𝑌.  

Here, 𝑇𝐴�̃�(𝑥), 𝐼𝐴�̃�(𝑥), 𝐹𝐴�̃�(𝑥) are called the membership degree of truthiness, indeterminacy and 

falsity for all 𝑥 ∈ 𝑌, respectively.  

Definition 2: [13] Assume a neutrosophic set 𝐴�̃� over the universal set of discourse 𝑌 is called to 
be single valued if 𝑥 is a single valued independent variable. Then, 𝑇𝐴�̃�(𝑥), 𝐼𝐴�̃�(𝑥), 𝐹𝐴�̃�(𝑥): 𝑋 → [0,1] 

will present the truth, indeterminacy and falsity membership functions, respectively.  

Definition 3: [6] The (𝛼, 𝛽, 𝛾) −cut of neutrosophic set 𝐴�̃� is defined by 𝐴𝑁(𝛼,𝛽,𝛾)̃ , where 𝛼, 𝛽, 𝛾 ∈

[0,1] are fixed numbers such that 𝛼 + 𝛽 + 𝛾 ≤ 3 and is defined by  

𝐴𝑁(𝛼,𝛽,𝛾)̃ = {𝑥 ∈ 𝑋: 𝑇𝐴�̃�(𝑥) ≥ 𝛼, 𝐼𝐴�̃�(𝑥) ≤ 𝛽, 𝐹𝐴�̃�(𝑥) ≤ 𝛾}                       (1) 

Definition 4: [13] A Neutrosophic set 𝐴�̃� is said to be a neutrosophic number over a set of real 
numbers (ℝ) if it has the following properties:  

(i) 𝐴�̃� is neutro-normal if there exists 𝑥0 ∈ ℝ such that 𝑇𝐴�̃�(𝑥0) = 1 and 𝐼𝐴�̃�(𝑥0) = 0 =

𝐹𝐴�̃�(𝑥0).  

(ii) 𝐴�̃� is a convex set for the truth function (𝑇𝐴�̃�); i.e., 𝑇𝐴�̃�(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥

min{𝑇𝐴�̃�(𝑥1), 𝑇𝐴�̃�(𝑥2)}, for 𝑥1, 𝑥2 ∈ ℝ and 𝜆 ∈ [0,1].  

(iii) 𝐴�̃� is a concave set for the indeterminacy function (𝐼𝐴�̃�); i.e., 𝐼𝐴�̃�(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤

max{𝐼𝐴�̃�(𝑥1), 𝐼𝐴�̃�(𝑥2)} , for 𝑥1, 𝑥2 ∈ ℝ and 𝜆 ∈ [0,1].  

(iv) 𝐴�̃� is a concave set for the falsity function (𝐹𝐴�̃�); i.e., 𝐹𝐴�̃�(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤

max{𝐹𝐴�̃�(𝑥1), 𝐹𝐴�̃�(𝑥2)} , for 𝑥1, 𝑥2 ∈ ℝ and 𝜆 ∈ [0,1].  

If the conditions (ii)-(iv) are satisfied, then the Neutrosophic set  (𝐴�̃�) is called neutro-convex.  

Definition 5: [13] If 𝐴�̃� is a Neutrosophic number, then (𝛼, 𝛽, 𝛾)-cut is given by 𝐴𝑁(𝛼,𝛽,𝛾)̃ =

{[𝐴1(𝛼), 𝐴2(𝛼)], [𝐴1
′ (𝛽), 𝐴2

′ (𝛽)], [𝐴1
′′(𝛾), 𝐴2

′′(𝛾)]}, where  

(i) 
𝑑𝐴1(𝛼)

𝑑𝛼
> 0,

𝑑𝐴2(𝛼)

𝑑𝛼
< 0, ∀ 𝛼 ∈ [0,1], 𝐴1(1) ≤ 𝐴2(1) 

(ii) 
𝑑𝐴1

′ (𝛽)

𝑑𝛽
< 0,

𝑑𝐴2
′ (𝛽)

𝑑𝛽
> 0, ∀ 𝛽 ∈ [0,1], 𝐴1

′ (0) ≤ 𝐴2
′ (0) 

(iii) 
𝑑𝐴1

′′(𝛾)

𝑑𝛾
< 0,

𝑑𝐴2
′′(𝛾)

𝑑𝛾
> 0, ∀ 𝛾 ∈ [0,1], 𝐴1

′′(0) ≤ 𝐴2
′′(0) 

with 𝛼 + 𝛽 + 𝛾 ≤ 3.  

Definition 6: [18] A symmetrical Bell-shaped Neutrosophic number (BNN) is denoted by 𝐵�̃� and 
describe as  

𝐵�̃� =< (𝑢1; 𝑣1; 𝑤), (𝑢2; 𝑣2; 𝑤), (𝑢3; 𝑣3; 𝑤) >                                            (2) 
where the truth, indeterminacy and falsity membership functions are denoted by 𝑇𝐵�̃�(𝑥), 𝐼𝐵�̃�(𝑥) 

and 𝐹𝐵�̃�(𝑥), respectively and defined as the following  
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{
  
 

  
 𝑇𝐵�̃�(𝑥) =

1

1+|
𝑥−𝑤

𝑢1
|
2𝑣1

𝐼𝐵�̃�(𝑥) = 1 −
1

1+|
𝑥−𝑤

𝑢2
|
2𝑣2

𝐹𝐵�̃�(𝑥) = 1 −
1

1+|
𝑥−𝑤

𝑢3
|
2𝑣3

                                                            (3) 

where −∞ < 𝑥 < ∞ and 𝑢𝑖 , 𝑣𝑖 , 𝑤 (𝑖 = 1,2,3) are the three variables. Normally, 𝑣𝑖  be the 
parameters are positive for 𝑖 = 1,2,3. Further, 𝑤 be another parameter locates at the centre of the 
curve and 𝑣𝑖  be the parameters control the slopes at the truth, indeterminacy and falsity membership 
functions crossover points, respectively, for 𝑖 = 1,2,3.  

If we consider the value of 𝑣𝑖 = 1 for all 𝑖 = 1,2,3, then the above definition of the bell-shaped 
Neutrosophic number is used to get the following definition.  

Definition 7: [18] A symmetrical Cauchy neutrosophic number (CNN) is denoted by  

𝐶�̃� =< (𝑢1; 𝑤), (𝑢2; 𝑤), (𝑢3; 𝑤) >                                                           (4) 
 is described by the truth, indeterminacy and falsity membership functions 𝑇𝐶�̃�(𝑥), 𝐼𝐶�̃�(𝑥) and 

𝐹𝐶�̃�(𝑥), respectively and defined as the following:  

{
  
 

  
 𝑇𝐶�̃�(𝑥) =

1

1+(
𝑥−𝑤

𝑢1
)
2

𝐼𝐶�̃�(𝑥) = 1 −
1

1+(
𝑥−𝑤

𝑢2
)
2

𝐹𝐶�̃�(𝑥) = 1 −
1

1+(
𝑥−𝑤

𝑢3
)
2

                                                                  (5) 

where 𝑥 ∈ (−∞,∞).  
Definition 8: [18] The parametric form of symmetrical CNN is described by  

𝐶�̃� =< (𝑢1; 𝑤), (𝑢2; 𝑤), (𝑢3; 𝑤) >                                                        (6) 

is given by 𝐶�̃�𝛼∈(0,1],𝛽,𝛾∈[0,1) = [(𝐶𝑇𝑙(𝛼), 𝐶𝑇𝑟(𝛼)) ; (𝐶𝐼𝑙(𝛽), 𝐶𝐼𝑟(𝛽)) ; (𝐶𝐹𝑙(𝛾), 𝐶𝐹𝑟(𝛾))], where  

{
 
 
 
 
 
 

 
 
 
 
 
 𝐶𝑇𝑙(𝛼) = 𝑤 − 𝑢1√

1−𝛼

𝛼

𝐶𝑇𝑟(𝛼) = 𝑤 + 𝑢1√
1−𝛼

𝛼

𝐶𝐼𝑙(𝛽) = 𝑤 − 𝑢2√
𝛽

1−𝛽

𝐶𝐼𝑟(𝛽) = 𝑤 + 𝑢2√
𝛽

1−𝛽

𝐶𝐹𝑙(𝛾) = 𝑤 − 𝑢3√
𝛾

1−𝛾

𝐶𝐹𝑟(𝛾) = 𝑤 + 𝑢3√
𝛾

1−𝛾

                                                                   (7) 

 
Definition 9: [36] Consider a Neutrosophic valued function (𝑓) define as 𝑓: 𝐼 → 𝑁 and 𝑥0 ∈ 𝐼. 

Then, the generalized Neutrosophic derivative of 𝑓(𝑥) at 𝑥0 is denoted by 𝑓′(𝑥0) and defined as 
follows   

(i) 𝑓𝑇𝛼
′ = [min {𝑓𝑇𝐿

′ (𝑥0; 𝛼), 𝑓𝑇𝑅
′ (𝑥0; 𝛼)} ,max{𝑓𝑇𝐿

′ (𝑥0; 𝛼), 𝑓𝑇𝑅
′ (𝑥0; 𝛼)}]  if 𝑓𝑇𝐿

′ (𝑥0; 𝛼), 𝑓𝑇𝑅
′ (𝑥0; 𝛼) 

exist.  



Spectrum of Engineering and Management Sciences 

Volume 3, Issue 1 (2025) 93-109 

97 
 
 

(ii) 𝑓𝐼𝛽
′ = [min {𝑓𝐼𝐿

′ (𝑥0; 𝛽), 𝑓𝐼𝑅
′ (𝑥0; 𝛽)} , max{𝑓𝐼𝐿

′ (𝑥0; 𝛽), 𝑓𝐼𝑅
′ (𝑥0; 𝛽)}]  if 𝑓𝐼𝐿

′ (𝑥0; 𝛽), 𝑓𝐼𝑅
′ (𝑥0; 𝛽) 

exist.  

(iii) 𝑓𝐹𝛾
′ = [min {𝑓𝐹𝐿

′ (𝑥0; 𝛾), 𝑓𝐹𝑅
′ (𝑥0; 𝛾)} ,max{𝑓𝐹𝐿

′ (𝑥0; 𝛾), 𝑓𝐹𝑅
′ (𝑥0; 𝛾)}]  if 𝑓𝐹𝐿

′ (𝑥0; 𝛾), 𝑓𝐹𝑅
′ (𝑥0; 𝛾) 

exist.  

𝑓′(𝑥) is said to be of type I derivative if  
[𝑓(𝑥0)](𝛼,𝛽,𝛾)

′ = {[𝑓𝑇𝐿
′ (𝑥0; 𝛼), 𝑓𝑇𝑅

′ (𝑥0; 𝛼)], [𝑓𝐼𝐿
′ (𝑥0; 𝛽), 𝑓𝐼𝑅

′ (𝑥0; 𝛽) ], [𝑓𝐹𝐿
′ (𝑥0; 𝛾), 𝑓𝐹𝑅

′ (𝑥0; 𝛾)]}             (8) 

And of type II derivative if  
[𝑓(𝑥0)](𝛼,𝛽,𝛾)

′ = {[𝑓𝑇𝑅
′ (𝑥0; 𝛼), 𝑓𝑇𝐿

′ (𝑥0; 𝛼)], [𝑓𝐼𝑅
′ (𝑥0; 𝛽), 𝑓𝐼𝐿

′ (𝑥0; 𝛽)], [𝑓𝐹𝑅
′ (𝑥0; 𝛾), 𝑓𝐹𝐿

′ (𝑥0; 𝛾)]}            (9) 

3. System of linear homogenous Neutrosophic Differential Equations  
 
Consider the system of the linear homogeneous differential equation of the form  

{

𝑑𝑦

𝑑𝑥
= 𝐴𝑧

𝑑𝑧

𝑑𝑥
= 𝐵𝑦

        (10) 

In the Equation (10), 𝐴, 𝐵 are constants. The initial conditions are given by   

{
𝑦(𝑥0) = 𝑦0
𝑧(𝑥0) = 𝑧0

       (11) 

The system represented by Equation (10) and Equation (11) is called a system of the homogenous 
linear Neutrosophic differential equation when the initial conditions given by Equation (11) are 
considered to be the Neutrosophic numbers.  

Suppose the initial values are 𝑦(𝑥0) = 𝑦0 and 𝑧(𝑥0) = 𝑧0 of Neutrosophic numbers and are 
denoted by  

�̃�𝑁𝑒𝑢(0) =  [(𝑦0𝐿(𝛼), 𝑦0𝑅(𝛼)); (𝑦0𝐿
′ (𝛽), 𝑦0𝑅

′ (𝛽)); (𝑦0𝐿
′′ (𝛾), 𝑦0𝑅

′′ (𝛾))]    (12) 

and  

�̃�𝑁𝑒𝑢(0) = [(𝑧0𝐿(𝛼), 𝑧0𝑅(𝛼)); (𝑧0𝐿
′ (𝛽), 𝑧0𝑅

′ (𝛽)); (𝑧0𝐿
′′ (𝛾), 𝑧0𝑅

′′ (𝛾))]   (13) 

Then Equations (10) and (11) can be represented as,  

{

𝑑�̃�𝑁𝑒𝑢

𝑑𝑥
= 𝐴 �̃�𝑁𝑒𝑢

𝑑𝑧𝑁𝑒𝑢

𝑑𝑥
= 𝐵 �̃�𝑁𝑒𝑢

       (14) 

with the initial condition 

{
�̃�𝑁𝑒𝑢(𝑥0) = �̃�0 𝑁𝑒𝑢
�̃�𝑁𝑒𝑢(𝑥0) = �̃�0 𝑁𝑒𝑢

      (15) 

Rewriting the systems given by Equation (14) in the (𝛼, 𝛽, 𝛾) −cut representation,  
𝑑

𝑑𝑥
[(𝑦𝐿(𝑥, α), 𝑦𝑅(𝑥, α)); (yL

′ (x, β), yR
′ (x, β)); (yL

′′(x, γ), yR
′′(x, γ))] 

= 𝐴[(𝑧𝐿(𝑥, α), 𝑧𝑅(𝑥, α)); (zL
′ (x, β), zR

′ (x, β)); (zL
′′(x, γ), zR

′′(x, γ))]     (16) 
𝑑

𝑑𝑥
[(𝑧𝐿(𝑥, α), 𝑧𝑅(𝑥, α)); (zL

′ (x, β), zR
′ (x, β)); (zL

′′(x, γ), zR
′′(x, γ))] 

= 𝐵[(𝑦𝐿(𝑥, α), 𝑦𝑅(𝑥, α)); (yL
′ (x, β), yR

′ (x, β)); (yL
′′(x, γ), yR

′′(x, γ))]      (17) 

Case 1: When the coefficients𝐴and 𝐵are positive numbers. We consider two distinct subcases 
under this instance in the manner described below:  

Subcase 1.1: When �̃�𝑁𝑒𝑢and �̃�𝑁𝑒𝑢 are of type I differentiable.  
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Then, from Equations (16) and (17), we get,  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑦𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝐿(𝑥, 𝛼)

𝑑𝑦𝑅(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝑅(𝑥, 𝛼)

𝑑𝑦𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝐿

′ (𝑥, 𝛽)

𝑑𝑦𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝑅

′ (𝑥, 𝛽)

𝑑𝑦𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝐿

′′(𝑥, 𝛾)

𝑑𝑦𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝑅

′′(𝑥, 𝛾)

     (18) 

and  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑧𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝐿(𝑥, 𝛼)

𝑑𝑧𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝑅(𝑥, 𝛼)

𝑑𝑧𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝐿

′(𝑥, 𝛽)

𝑑𝑧𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝑅

′ (𝑥, 𝛽)

𝑑𝑧𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝐿

′′(𝑥, 𝛾)

𝑑𝑧𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝑅

′′(𝑥, 𝛾)

     (19) 

Then,  
𝑑2𝑦𝐿(𝑥,𝛼)

𝑑𝑥2
= 𝐴𝐵𝑦𝐿(𝑥, 𝛼)     (20) 

which gives 𝑦𝐿(𝑥, 𝛼) = 𝑐1𝑒
√𝐴𝐵𝑥 + 𝑐2𝑒

−√𝐴𝐵𝑥 and then, using the initial conditions we get  

𝑦𝐿(𝑥, 𝛼) =
1

2
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑥 +
1

2
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑥                    (21) 

and  

𝑧𝐿(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑥 −
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑥              (22) 

Similarly, 

𝑦𝑅(𝑥, 𝛼) =
1

2
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 +
1

2
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥                   (23) 

𝑧𝑅(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 −
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥            (24) 

𝑦𝐿
′ (𝑥, 𝛽) =

1

2
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                   (25) 

𝑧𝐿
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥      (26) 

𝑦𝑅
′ (𝑥, 𝛽) =

1

2
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                   (27) 

𝑧𝑅
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥      (28) 

𝑦𝐿
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                   (29) 
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𝑧𝐿
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥             (30) 

𝑦𝑅
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                  (31) 

𝑧𝑅
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥           (32) 

Subcase 1.2: When�̃�𝑁𝑒𝑢and �̃�𝑁𝑒𝑢 are of type II differentiable. 
Then, from the Equations (16) and (17) we get,  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑦𝑅(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝐿(𝑥, 𝛼)

𝑑𝑦𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝑅(𝑥, 𝛼)

𝑑𝑦𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝐿

′ (𝑥, 𝛽)

𝑑𝑦𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝑅

′ (𝑥, 𝛽)

𝑑𝑦𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝐿

′′(𝑥, 𝛾)

𝑑𝑦𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝑅

′′(𝑥, 𝛾)

                                                (33) 

and  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑧𝑅(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝐿(𝑥, 𝛼)

𝑑𝑧𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝑅(𝑥, 𝛼)

𝑑𝑧𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝐿

′(𝑥, 𝛽)

𝑑𝑧𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝑅

′ (𝑥, 𝛽)

𝑑𝑧𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝐿

′′(𝑥, 𝛾)

𝑑𝑧𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝑅

′′(𝑥, 𝛾)

                                              (34) 

Then,  
𝑑2𝑦𝑅(𝑥,𝛼)

𝑑𝑥2
= 𝐴𝐵𝑦𝑅(𝑥, 𝛼)                                    (35) 

which gives 𝑦𝑅(𝑥, 𝛼) = 𝑐3𝑒
√𝐴𝐵𝑡 + 𝑐4𝑒

−√𝐴𝐵𝑡 and then, using the initial conditions we get  

𝑦𝑅(𝑥, 𝛼) =
1

2
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑡 +
1

2
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑡                   (36) 

and  

𝑧𝐿(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑡 −
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑡             (37) 

Similarly, 

𝑦𝐿(𝑥, 𝛼) =
1

2
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 +
1

2
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥                  (38) 

𝑧𝑅(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 −
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥            (39) 

𝑦𝑅
′ (𝑥, 𝛽) =

1

2
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                  (40) 
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𝑧𝐿
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥     (41) 

𝑦𝐿
′ (𝑥, 𝛽) =

1

2
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                  (42) 

𝑧𝑅
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥           (43) 

𝑦𝑅
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                  (44) 

𝑧𝐿
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥     (45) 

𝑦𝐿
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                  (46) 

𝑧𝑅
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥            (47) 

Case 2: When the coefficients 𝐴 and 𝐵 are negative numbers. We consider two distinct subcases 
under this instance in the manner described below:  

Subcase 2.1: When �̃�𝑁𝑒𝑢and �̃�𝑁𝑒𝑢 are of type I differentiable.  
Then, from the Equations (16) and (17) we get,  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑦𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝑅(𝑥, 𝛼)

𝑑𝑦𝑅(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝐿(𝑥, 𝛼)

𝑑𝑦𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝑅

′ (𝑥, 𝛽)

𝑑𝑦𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝐿

′ (𝑥, 𝛽)

𝑑𝑦𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝑅

′′(𝑥, 𝛾)

𝑑𝑦𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝐿

′′(𝑥, 𝛾)

                                                (48) 

and  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑧𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝑅(𝑥, 𝛼)

𝑑𝑧𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝐿(𝑥, 𝛼)

𝑑𝑧𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝑅

′ (𝑥, 𝛽)

𝑑𝑧𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝐿

′(𝑥, 𝛽)

𝑑𝑧𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝑅

′′(𝑥, 𝛾)

𝑑𝑧𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝐿

′′(𝑥, 𝛾)

                                                (49) 

Then,  
𝑑2𝑦𝐿(𝑥,𝛼)

𝑑𝑥2
= 𝐴𝐵𝑦𝐿(𝑥, 𝛼)                                                 (50) 

which gives 𝑦𝐿(𝑥, 𝛼) = 𝑐5𝑒
√𝐴𝐵𝑡 + 𝑐6𝑒

−√𝐴𝐵𝑡 and then, using the initial conditions, we get  

𝑦𝐿(𝑥, 𝛼) =
1

2
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 +
1

2
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥                  (51) 
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𝑧𝑅(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 −
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥           (52) 

Similarly,  

𝑦𝑅(𝑥, 𝛼) =
1

2
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑡 +
1

2
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑡                 (53) 

𝑧𝐿(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑡 −
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑡    (54) 

𝑦𝐿
′ (𝑥, 𝛽) =

1

2
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                 (55) 

𝑧𝑅
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥          (56) 

𝑦𝑅
′ (𝑥, 𝛽) =

1

2
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                (57) 

𝑧𝐿
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥   (58) 

𝑦𝐿
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                (59) 

𝑧𝑅
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥          (60) 

𝑦𝑅
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                (61) 

𝑧𝐿
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥          (62) 

Subcase 2.2: When �̃�𝑁𝑒𝑢and �̃�𝑁𝑒𝑢 are of type II differentiable.  
Then, from the Equations (16) and (17) we get,  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑦𝑅(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝑅(𝑥, 𝛼)

𝑑𝑦𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐴𝑧𝐿(𝑥, 𝛼)

𝑑𝑦𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝑅

′ (𝑥, 𝛽)

𝑑𝑦𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐴𝑧𝐿

′ (𝑥, 𝛽)

𝑑𝑦𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝑅

′′(𝑥, 𝛾)

𝑑𝑦𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐴𝑧𝐿

′′(𝑥, 𝛾)

                                                (63) 

and  
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{
 
 
 
 
 

 
 
 
 
 
𝑑𝑧𝑅(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝑅(𝑥, 𝛼)

𝑑𝑧𝐿(𝑥,𝛼)

𝑑𝑥
= 𝐵𝑦𝐿(𝑥, 𝛼)

𝑑𝑧𝑅
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝑅

′ (𝑥, 𝛽)

𝑑𝑧𝐿
′ (𝑥,𝛽)

𝑑𝑥
= 𝐵𝑦𝐿

′(𝑥, 𝛽)

𝑑𝑧𝑅
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝑅

′′(𝑥, 𝛾)

𝑑𝑧𝐿
′′ (𝑥,𝛾)

𝑑𝑥
= 𝐵𝑦𝐿

′′(𝑥, 𝛾)

                                                       (64) 

Then,  
𝑑2𝑦𝑅(𝑥,𝛼)

𝑑𝑥2
= 𝐴𝐵𝑦𝑅(𝑥, 𝛼)                                                (65) 

which gives 𝑦𝑅(𝑥, 𝛼) = 𝑐7𝑒
√𝐴𝐵𝑥 + 𝑐8𝑒

−√𝐴𝐵𝑥 and then, using the initial conditions we get 

𝑦𝑅(𝑥, 𝛼) =
1

2
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 +
1

2
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥                   (66) 

and  

𝑧𝑅(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) + √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

√𝐴𝐵𝑥 −
1

2
√
𝐵

𝐴
{𝑦0𝑅(𝛼) − √

𝐴

𝐵
𝑧0𝑅(𝛼)} 𝑒

−√𝐴𝐵𝑥           (67) 

Similarly, 

𝑦𝐿(𝑥, 𝛼) =
1

2
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑥 +
1

2
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑥                  (68) 

𝑧𝐿(𝑥, 𝛼) =
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) + √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

√𝐴𝐵𝑥 −
1

2
√
𝐵

𝐴
{𝑦0𝐿(𝛼) − √

𝐴

𝐵
𝑧0𝐿(𝛼)} 𝑒

−√𝐴𝐵𝑥     (69) 

𝑦𝑅
′ (𝑥, 𝛽) =

1

2
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                  (70) 

𝑧𝑅
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) + √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′ (𝛽) − √
𝐴

𝐵
𝑧0𝑅
′ (𝛽)} 𝑒−√𝐴𝐵𝑥     (71) 

𝑦𝐿
′ (𝑥, 𝛽) =

1

2
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥                  (72) 

𝑧𝐿
′ (𝑥, 𝛽) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) + √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′ (𝛽) − √
𝐴

𝐵
𝑧0𝐿
′ (𝛽)} 𝑒−√𝐴𝐵𝑥            (73) 

𝑦𝑅
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                  (74) 

𝑧𝑅
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝑅

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝑅
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥           (75) 

𝑦𝐿
′′ (𝑥, 𝛾) =

1

2
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 +

1

2
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥                 (76) 

𝑧𝐿
′′ (𝑥, 𝛾) =

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) + √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒√𝐴𝐵𝑥 −

1

2
√
𝐵

𝐴
{𝑦0𝐿

′′ (𝛾) − √
𝐴

𝐵
𝑧0𝐿
′′ (𝛾)} 𝑒−√𝐴𝐵𝑥            (77) 

4. Application  
 
Consider the arm race model [31] in a Neutrosophic arena. Suppose two conflicting nations A and 

B are there with their capacities of �̃�𝑁𝑒𝑢(𝑡) and �̃�𝑁𝑒𝑢(𝑡) number armaments respectively at time 𝑡. 
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One nation increases their armaments in a competitive proportion with another nation to defend 
itself from the possible aggression of the opponent. Now, the initial information about the strengths 
of two opponent countries may be imprecise to each other and they can try to predict it using the 
philosophy of neutrosophy. When the available information is considered about a value in bell-
shaped generalized sense, the Cauchy neutrosophic number can fulfill the purposes. Consequently, 
the following system of Neutrosophic linear homogeneous differential equations can be applied to 
stand for the system.  

{

𝑑�̃�𝑁𝑒𝑢(𝑡)

𝑑𝑡
= 𝑀 �̃�𝑁𝑒𝑢(𝑡)

𝑑𝑧𝑁𝑒𝑢(𝑡)

𝑑𝑥
= 𝑁 �̃�𝑁𝑒𝑢(𝑡)

                                                (78) 

with the initial conditions  

{
�̃�𝑁𝑒𝑢(0) = �̃�0 𝑁𝑒𝑢
�̃�𝑁𝑒𝑢(0) = �̃�0 𝑁𝑒𝑢

                                                (79) 

In our numerical simulation, we assume that the efficiency to increase their armaments are equal 
for both nations. So, let 𝑀 = 𝑁 = 0.5.  

Also, let �̃�0 𝑁𝑒𝑢(0) =< (1; 40), (1.5; 40), (2; 40) and �̃�0 𝑁𝑒𝑢(0) =< (1; 0); (1.5,0), (2,0) > be 
two Cauchy Neutrosohphic numbers. Figure 1 and Figure 2 visualize the Cauchy Neutrosophic 
numbers �̃�0 𝑁𝑒𝑢(0) and �̃�0 𝑁𝑒𝑢(0), respectively.  

 
Fig. 1. Initial armament �̃�0 𝑁𝑒𝑢(0) of the nation A 
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Fig. 2. Initial armament �̃�0 𝑁𝑒𝑢(0) of the nation B  

 

The parametric forms of the Cauchy neutrosophic numbers are given by  

�̃�𝑁𝑒𝑢(0) =  [(𝑦0𝐿(𝛼), 𝑦0𝑅(𝛼)); (𝑦0𝐿
′ (𝛽), 𝑦0𝑅

′ (𝛽)) ; (𝑦0𝐿
′′ (𝛾), 𝑦0𝑅

′′ (𝛾))]                             (80) 

and  

�̃�𝑁𝑒𝑢(0) = [(𝑧0𝐿(𝛼), 𝑧0𝑅(𝛼)); (𝑧0𝐿
′ (𝛽), 𝑧0𝑅

′ (𝛽)) ; (𝑧0𝐿
′′ (𝛾), 𝑧0𝑅

′′ (𝛾))]                         (81) 

where  

{
 
 
 
 
 
 

 
 
 
 
 
 𝑦0𝐿(𝛼) = 40 − √

1−𝛼

𝛼

𝑦0𝑅(𝛼) = 40 + √
1−𝛼

𝛼

𝑦0𝐿
′ (𝛽) = 40 − 1.5√

𝛽

1−𝛽

𝑦0𝑅
′ (𝛽) = 40 + 1.5√

𝛽

1−𝛽

𝑦0𝐿
′′ (𝛾) = 40 − 2√

𝛾

1−𝛾

𝑦0𝑅
′′ (𝛾) = 40 + 2√

𝛾

1−𝛾

                                                (82) 

and  
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑧0𝐿(𝛼) = −√

1−𝛼

𝛼

𝑧0𝑅(𝛼) = √
1−𝛼

𝛼

𝑧0𝐿
′ (𝛽) = −1.5√

𝛽

1−𝛽

𝑧0𝑅
′ (𝛽) = 1.5√

𝛽

1−𝛽

𝑧0𝐿
′′ (𝛾) = −2√

𝛾

1−𝛾

𝑧0𝑅
′′ (𝛾) = 2√

𝛾

1−𝛾

                                                (83) 

Then, taking the differentiability of �̃�𝑁𝑒𝑢and �̃�𝑁𝑒𝑢 are of type I, the solution of the system given 
by Equation (78) is obtained as  

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑦𝐿(𝑡, 𝛼) = (20 − √

1−𝛼

𝛼
)𝑒0.5𝑡 + 20𝑒−0.5𝑡

𝑧𝐿(𝑡, 𝛼) = (20 − √
1−𝛼

𝛼
) 𝑒0.5𝑡 − 20𝑒−0.5𝑡

𝑦𝑅(𝑡, 𝛼) = (20 + √
1−𝛼

𝛼
)𝑒0.5𝑡 + 20𝑒−0.5𝑡

𝑧𝑅(𝑡, 𝛼) = (20 + √
1−𝛼

𝛼
) 𝑒0.5𝑡 − 20𝑒−0.5𝑡

𝑦𝐿
′ (𝑡, 𝛽) = (20 − 1.5√

𝛽

1−𝛽
) 𝑒0.5𝑡 + 20𝑒−0.5𝑡

𝑧𝐿
′ (𝑡, 𝛽) = (20 − 1.5√

𝛽

1−𝛽
) 𝑒0.5𝑡 − 20𝑒−0.5𝑡

𝑦𝑅
′ (𝑡, 𝛽) = (20 + 1.5√

𝛽

1−𝛽
) 𝑒0.5𝑡 + 20𝑒−0.5𝑡

𝑧𝑅
′ (𝑡, 𝛽) = (20 + 1.5√

𝛽

1−𝛽
) 𝑒0.5𝑡 − 20𝑒−0.5𝑡

𝑦𝐿
′′ (𝑡, 𝛾) = (20 − 2√

𝛾

1−𝛾
) 𝑒0.5𝑡 + 20𝑒−0.5𝑡

𝑧𝐿
′′ (𝑡, 𝛾) = (20 − 2√

𝛾

1−𝛾
) 𝑒0.5𝑡 − 20𝑒−0.5𝑡

𝑦𝑅
′′ (𝑡, 𝛾) = (20 + 2√

𝛾

1−𝛾
) 𝑒0.5𝑡 + 20𝑒−0.5𝑡

𝑦𝑅
′′ (𝑡, 𝛾) = (20 + 2√

𝛾

1−𝛾
) 𝑒0.5𝑡 − 20𝑒−0.5𝑡

                            (84) 

Then, after 5 years of the arm race, components of the parametric representation of the 
uncertain armaments of nation A are represented in Table 1 for different levels of aspirations.  
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Table 1  
Armaments of the nation A after 5 years  

𝛼, 𝛽, 𝛾 𝑦𝐿(𝑡, 𝛼) 𝑦𝑅(𝑡, 𝛼) 𝑦𝐿
′ (𝑡, 𝛽) 𝑦𝑅

′ (𝑡, 𝛽) 𝑦𝐿
′′ (𝑡, 𝛾) 𝑦𝑅

′′ (𝑡, 𝛾) 

0 −∞ +∞ 245.2916 245.2916 245.29158 245.2916 

0.1 208.744098 281.83906 239.2003 251.3828 237.16992 253.4132 
0.2 220.926592 269.65657 236.154 254.4285 233.10909 257.4741 

0.3 226.682513 263.900647 233.3286 257.2546 229.34095 261.2422 

0.4 230.3711329 260.212027 230.3711 260.212 225.39765 265.1855 

0.5 233.109086 257.474074 227.0178 263.5653 220.92659 269.6566 

0.6 235.3446153 255.238545 222.9109 267.6723 215.45069 275.1325 
0.7 237.3162656 253.266894 217.378 273.2052 208.07345 282.5097 
0.8 239.200333 251.382827 208.7441 281.8391 196.5616 294.0216 

0.9 241.2307486 249.352411 190.47036 300.1128 172.19662 318.3865 

1 245.29158 245.29158 −∞ +∞ −∞ +∞ 

 

The tabular data from Table 1 can be put into the graphical representation in Figure 3, which can 
interpret the situation more precisely.  

 
Fig. 3.  Armaments �̃�𝑁𝑒𝑢(𝑡) of the nation A after 5 years  

 
Then, after 5 years of the arm race, components of the parametric representation of the 

uncertain armaments of nation B are represented in Table 2 for different levels of aspirations.  
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Table 2  
Armaments of the nation B after 5 years  

𝛼, 𝛽, 𝛾 𝑧𝐿(𝑡, 𝛼) 𝑧𝑅(𝑡, 𝛼) 𝑧𝐿
′ (𝑡, 𝛽) 𝑧𝑅

′ (𝑡, 𝛽) 𝑧𝐿
′′ (𝑡, 𝛾) 𝑧𝑅

′′ (𝑡, 𝛾) 

0 −∞ +∞ 242.0082 242.0082 242.0082 242.0082 

0.1 205.460698 278.55566 235.9169 248.0994 233.8865 250.1298 

0.2 217.643192 266.37317 232.8713 251.1451 229.8257 254.1907 

0.3 223.3991131 260.61725 230.0452 253.9712 226.0576 257.9588 

0.4 227.087733 256.92863 227.0877 256.9286 222.1143 261.9021 

0.5 229.825686 254.19067 223.7344 260.2819 217.6432 266.3732 

0.6 232.0612153 251.95514 219.6275 264.3889 212.1673 271.8491 

0.7 234.0328656 249.98349 214.0946 269.9218 204.79 279.2263 

0.8 235.916933 248.09943 205.4607 278.5557 193.2782 290.7382 

0.9 237.9473487 246.06901 187.187 296.8294 168.91322 315.1031 

1 242.00818 242.00818 −∞ +∞ −∞ +∞ 

 

The tabular data from Table 2 can be put into the graphical representation in Figure 4 which can 
interpretate the situation more precisely.  

 
 

Fig. 4.  Armaments �̃�𝑁𝑒𝑢(𝑡) of the nation B after 5 years  

 
Remark 1: The bell-shaped nature of the initial neutrosophic information is preserved in the 

solution also.  
 

5. Conclusion  
 
In this paper, a system of neutrosophic linear homogenous differential equations is analyzed in a 

neutrosophic environment. Here, the initial states are taken as the neutrosophic numbers and the 
manifestation is done based on the generalized differentiability of the neutrosophic valued functions. 
From our discussion in this chapter, it is perceived that the theory of system of differential equations 
in crisp and fuzzy environment can be easily extended into the domain of neutrosophic uncertainty 
which is more specific and structured sense of uncertainty. Also, the arms race phenomenon 
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between two conflicting nations is aptly depicted in this chapter with Cauchy’s neutrosophic numbers 
as the information about the initial armaments. In future, more theories on the uncertain system of 
differential equations can be developed in this direction. Also, the mathematical modelling of real 
physical phenomena as an application of the proposed theory may be a matter of future challenges 
in this context.  
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