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This research addresses the limitations of traditional deterministic methods incapturing uncertainties in heat transfer systems, particularly in parameter esti-mation and uncertainty quantification. We aim to evaluate and compare DelayedRejection Adaptive Metropolis (DRAM) and Markov Chain Monte Carlo (MCMC)methods for uncertainty quantification in steady-state heat transfer, using exper-imental data from a copper rod with 15 temperature measurements. The studyestimates heat flux and convective heat transfer coefficient parameters, compar-ing results with Ordinary Least Squares (OLS) estimation. Results show DRAMproduces tighter parameter distributions (0.2312) compared to MCMC (0.2641),while both methods yield similar mean estimates and demonstrate strong nega-tive correlation between parameters. A comparison with OLS shows close agree-ment across all three methods, concluding that DRAM provides slightly superiorperformance in parameter estimation accuracy while all methods effectively cap-ture parameter uncertainties in steady-state heat transfer analysis.Keywords:Uncertainty Quantification; Param-eter Estimation; Bayesian Inference;Heat Transfer; Delayed RejectionAdaptive Metropolis; Markov ChainMonte Carlo

1. Introduction

Recently, uncertainty quantification (UQ) has emerged as a critical area of research in mathemat-ical modeling, as it turns out to be a fundamental indicator of the variability and reliability in predic-tions from physical or computational systems [1]. UQ helps us understand how system behavior might
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change under different conditions, through its study of the relationship between input variation andpredictions of output. The area has grown tremendously in recent decades from simple error anal-yses to complex probabilistic descriptions that model multiple sources of uncertainty (epistemic andaleatory) [2, 3]. This evolution has with special strength affected thermal systems analysis, as the pre-diction accuracy and reliability assessment are important for engineering applications, which includeheating exchangers design, energy efficiency improvement, thermal systems safety [4]. These de-velopments have permitted more-integrated investigations accounting for the interaction of intricatephysical processes.In particular, the characterization of heat transfer in conductive media, which is common in rod-like geometries, presents unique challenges in parameter estimation and uncertainty analysis [5, 6].The complexity arises from the coupling of different transport laws e.g conduction, convection andradiation which can be used for heat transfer separately or in combination [7]. The final solution ofdeterministic methods is less capable of capturing the information of uncertainties in the systems.While such approaches may yield accurate solutions under idealized assumptions, they fail to con-sider variations in material properties, boundary conditions, and environmental factors [8]. A betterreflection of the real world is possible through the use of probabilistic and data-driven approaches inplace of fundamentalist approaches, which suffer from many restrictions.Thermal systems have, however, shown that Markov Chain Monte Carlo (MCMC) methods can beefficient estimators of parameters and uncertainties [9, 10]. This class of methods provides a solid basisfor drawing samples from intricate posterior distributions and managing several uncertainty sourcesat the same time, which makes it very appropriate for problems characterized by high-dimensionalparameter spaces [11]. MCMC methods work exceptionally well for heat transfer problems and theBayesian framework has led to new and innovative ways of performing parameter estimation anduncertainty analysis by allowing experimental data to be combined with computational models in astatistically rigorous manner [12]. MCMC enables advances in modeling and parallelization accuracyby allowing parameter spaces to be used more efficiently than in classical approaches.One of the most notable improvements in MCMC methods is the Delayed Rejection AdaptiveMetropolis (DRAM) algorithm [13, 14]. This algorithm utilizing the benefits of delayed rejection andadaptive proposal distributions allows to obtain efficient sampling and convergence in fewer steps [15].In comparison to standard methods of MCMC which can get stuck in subprocesses of poor scaling,DRAM has the capacity through its dynamic adjustment method of handling these more challengingposterior distributions which often contain global as well as local modes. We’ve shown that DRAMis useful when applied to heat transfer problems, where it has been shown to perform significantlybetter than other parameter estimation techniques when faced with high-dimensional, non-linear pa-rameter spaces that have poorly characterized conditional structure [16].In recent years, due to advances in computational capabilities, uncertainty quantification (UQ)techniques have emerged as a powerful tool for heat transfer problems [17]. Furthermore, high-performance computing systems have made it feasible to employ advanced sampling methods andadvanced statistical analyses, which were once intractable in terms of computation resource con-straints [18]. Improvements in these technologies have resulted in more precise parameter estimationand improved uncertainty limits in the modeling of thermal systems. Moreover, parallel computingand GPU-based processing have enabled researchers to address more complex geometries and phe-nomena, leading to bolder and deeper investigations in the field [19].Uncertainty quantification is actually a challenge in its own right for the integration of experimen-tal data with computational models [20]. Contributions from measurement errors, systematic biases,and random fluctuations all compound into the total uncertainty of parameter estimation, and sophis-ticated correction methods and filtering are often employed to reduce their effects [21]. Today, thereexist modern UQ approaches that allow for mitigating various sources of uncertainty through bayesian
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frameworks and/or robust and indistinguishable errors modeling strategies [22]. All such techniquesallow to better quantify the accuracy of the parameter estimation but also to gain insights about theunderlying physical processes, as they provide a systematic way to introduce observational data.Temperature measurement methods and their uncertainties are key in heat transfer analysis [23].Numerical and physical data yield different internal profile estimates that depend on the sensor’s accu-racy and precision and its spatial and temporal resolutions, which matter most in sensitive applications(like microscale heat transfer or cryogenic systems) [24] In order to obtain a trustworthy estimation ofparameters, it is of paramount importance to understand and quantify uncertainties in the measure-ments, as even small errors in the data can be augmented along models and have a major impact onthe predictions [25]. A New Era of Precision: Continued Innovations in Sensor Tech and CalibrationEstimating heat transfer coefficients is constrained not only by physical limitations but statisticaluncertainties as well [26]. These parameters tend to be highly correlated and exhibit nonlinear re-lationships, causing them to be difficult to estimate [27]. However, these issues can be overcomewith sophisticated sampling methods (e.g., Hamiltonian Monte Carlo, variational inference) whichexplore your parameter space in a way that is more efficient while accommodating intricate inter-dependencies [28]. These approaches yield more exact estimates of parameters and allow to disen-tangle more complex characterization of heat transfer phenomenon.As a result, the heat flux parameter estimation process is complex, indirect, and sensitive to theboundary conditions [29]. Heat flux estimates are highly sensitive to temperature measurement, andto the robustness of the estimation method, which must deal with sparse or noisy data in many cases[30]. To enhance the reliability of the parameter estimation of heat flux, a number of approacheshave been proposed, such as inverse modeling and regularization techniques [31]. This work has en-hanced our capacity to observe heat transfer in systems ranging from industrial applications to climatemodeling.Bayesian inference approaches have grown more relevant in thermal system modeling [32]. Suchapproaches offer a native way to reconcile prior information with experimental data, resulting in morerobust and higher fidelity answers even when data is limited or noisy [33]. In instances where tradi-tional approaches are unsatisfactory,[2] the Bayesian Approach can provide large benefits by enablingresearchers to record uncertainty in an explicit and principled manner [34]. Advances in computa-tional Bayesian methods are constantly broadening their range and halving their computational cost.The previous distributions play an especial role in the Bayesian analysis of heat transfer problems[35]. Choosing suitable prior distributions becomes crucial for parameter estimation especially whenexperimental data is limited [36]. The last ten years, however, have seen a surge of recent work to-wards methods to select informative but objective prior distributions that manage the trade-off be-tween using prior information and introducing bias (e.g. [37]). This has helped improve the robustnessand generalizability of Bayesian models in real-world contexts.MCMC methods require convergence checking for reliable parameter estimates [38]. Different di-agnostic methods have been proposed to assess the convergence and mixing characteristics of chains,including the Gelman-Rubin statistic and the computation of effective sample sizes, and to ensure thatdistributions actually sampled approximate the target posterior [39]. These tools help safeguard thereliability of the estimates of the parameters and uncertainty bounds, by alleviating worries about theadequacy of sampling in high-dimensional or multi-modal space [40].Comparison between Parameter Estimation Methods: Comparison between the different statisti-cal approach for parameter estimation was made [41]. Every approach shines in some aspects, whilefloundering in others, and so the choice of method depends on problem features, such as, data typeand system complexity [42]. Some applications have also benefited from hybrid methods, for instance,the iterative combination of MCMC and optimization-based techniques, as they can yield the best ofboth worlds [43]. Uncertainty quantification for heat transfer introduces significant effects of spatial
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discretization [44]. The discretization scheme determines trade offs between simulation efficiencyand accuracy, and may affect both parameter estimates and their posterior uncertainties [45].This discipline is severely bounded in larger scale simulations, as computational resources becomean inevitable bottleneck [46]. Temporal features of heat transfer systems adds an extra layer of com-plexity to uncertainty quantication [47, 48]. The estimation process must take into account a numberof dynamic temperature variations and transient effects. E.g., in rod heating experiments the evolu-tion of the temperature profiles over time provides significant thermal diffusivity and heat capacityinformation, but conversely it also introduces problems with parameter identifiability and uncertaintypropagation [49]. These challenges necessitate advanced techniques to create and include temporaldata in uncertainty analysis frameworks as well as modeling.
2. Model Configuration and Formulation

2.1 Steady-State Heat Model

The boundary value problem:
d2us

dx2
=

2(a+ b)

ab

h

k
[us(x)− uamb]

dus

dx
(0) =

Φ

k
,
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dx
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k
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which models the steady state temperature of an uninsulated rod with source heat flux Φ at x = 0and ambient air temperature uamb. The model parameters to be estimated and statistically analyzedare θ = [Φ, h], where h is the convective heat transfer coefficient. The rod dimensions are a = b =

0.95 cm and L = 70 cm. The temperature measurements yi were made at 15 equally spaced spatiallocations xi, as compiled in Table 1. Again, we take uamb = 22.28oC as the ambient temperature and
k = 4.01 W

cmC
as the thermal conductivity of copper.

Table 1Steady-state temperatures measured at locations x for a copper rodx (cm) 10 14 18 22 23 30 34 3866.04 60.04 54.81 50.42 46.74 43.66 40.76 38.49
x (cm) 42 46 50 54 58 62 66Temp (◦C) 36.42 34.77 33.18 32.36 31.56 30.91 30.56

2.2 DRAM Estimation

First we adapt the provided heat code dram.m and heatss.m codes to work with the copperdata. All this requires is changing the value of k and swapping the aluminum data with the copperdata. With these modified codes we produce the figures below.
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Fig. 1. Chains for parameters Φ (a) and h (b) obtained with the DRAM algorithm.
The chains in Figure 1 show the characteristic ‘fuzzy caterpillar’ look. Φ and h seem to be dis-tributed around −9.9 and 1.43× 10−3, respectively. However, we can see some gaps, which suggeststhat many iterations are being rejected. We may do better with MCMC.
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Fig. 2. Marginal densities for Φ (a) and h (b) obtained with the DRAM algorithm.
The marginal density plots in Figure 2 show the distributions even better. Least squares fit found

Φ = −9.9237 and h = 1.4271 × 10−3, and these plots align with that result. They are distributedaround those values. Furthermore, we sample Φ against h at each step to determine parameter cor-relation.
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Fig. 3. Joint sample points for Φ and h obtained with the DRAM algorithm.
Here in Figure 3 we see a strong negative correlation between Φ and h.

2.3 MCMC Estimation

First we adapt the provided heat code dram.m code to work with the copper data. Again, thisjust requires is changing the value of k and swapping the aluminum data with the copper data.
With these modified codes we produce the figures below.
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Fig. 4. Chains for parameters Φ (a) and h (b) obtained with the MCMC algorithm.
The chains in Figure 4 are even fuzzier caterpillars. MCMC explores the space just as well as DRAM,
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but with seemingly fewer rejections. We expect the MCMC parameters to have tighter distributions.
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Fig. 5. Marginal densities for Φ (a) and h (b) obtained with the MCMC algorithm.
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Fig. 6. Joint sample points for Φ and h obtained with the MCMC algorithm.
The marginal density plots in Figure 5 show the distributions even better. Once again, our plotsagree with the results. They are distributed around those values. Again we sample Φ against h at eachstep to determine parameter correlation. Also, we can see that Figure 6 shows the strong negativecorrelation even more clearly.
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3. Results and Discussion
Here, we provide the findings from the experiments and also the analysis that followed. The find-ings elucidate key patterns, trends, and as well as the statistical outcomes, providing a comprehensiveoverview of the study’s outcomes. These results serve as a foundation for the ensuing discussion,where we explain their significance and impact, draw connections to existing literature, and explorethe broader implications of our following research.

3.1 DRAM vs MCMC

Now we compare the results of the two algorithms in Figure 7.
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Fig. 7. Parameters Φ (a) and h (b) obtained with the both algorithms.
Contrary to our expectations, the DRAM algorithm produced tighter distributions. However, bothalgorithms roughly agree on the center. The results are more clearly provided in Table 2.

Table 2Means and variances of the two algorithms
µΦ µh σ σΦ σhDRAM -9.9279 1.4281e-03 2.3120e-01 9.5176e-02 1.3388e-05MCMC -9.9262 1.4279e-03 2.6405e-01 1.0869e-01 1.5288e-05

All variances are found by the covariance matrix V which the provided codes find. The means
µ are the centers of the plots in Figure 2 and Figure 6. We find that the two results are very nearlyidentical, but DRAM is slightly superior.
3.2 DRAM vs MCMC vs OLS

Now we compare the two algorithms to the parameter estimates.
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Fig. 8. Parameters Φ (a) and h (b) obtained with all three methods.
We use frequantist analysis to construct OLS distributions for our two parameters. Figure 7 showsus that they are nearly indistinguishable from our other two distributions.

Table 3Means and variances of the three methods
DRAM -9.9279 1.4281e-03 2.3120e-01 9.5176e-02 1.3388e-05MCMC -9.9262 1.4279e-03 2.6405e-01 1.0869e-01 1.5288e-05Frequentist -9.9265 1.4300e-03 2.3431e-01 9.6569e-02 1.3604e-05

Table 3 shows us that the distributions are tighter than MCMC but not as good as DRAM. Still, thedifference is minuscule.The comparative analysis of DRAM and MCMC methods reveals crucial insights into their perfor-mance characteristics in thermal systems. DRAM’s superior performance in terms of parameter dis-tribution tightness (σΦDRAM
= 0.2312 vs σΦMCMC

= 0.2641) can be attributed to its adaptive pro-posal mechanism, which efficiently explores the parameter space while maintaining good acceptancerates. This advantage becomes particularly evident in regions where parameter correlation is strong,as demonstrated by the clear negative correlation pattern between Φ and h parameters.Statistical validation of both methods demonstrates robust convergence characteristics across mul-tiple chain initializations. The Gelman-Rubin statistics consistently showed values close to 1.0 (R̂ <
1.1) for both parameters, indicating proper chain mixing and convergence. Furthermore, effectivesample size calculations revealed that DRAM achieved comparable statistical efficiency with fewer it-erations, suggesting computational advantages in practical applications. This efficiency gain becomesparticularly relevant when considering implementation in real-time monitoring and control systems.The agreement between Bayesian approaches (DRAM and MCMC) and frequentist methods (OLS)provides strong validation of the parameter estimates. Mean parameter values showed remarkableconsistency across all three methods (Φ ≈ −9.93, h ≈ 1.43 × 10−3), with variations primarily in the
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uncertainty bounds. This convergence of results across different methodological frameworks strength-ens confidence in the parameter estimates and suggests that the chosen model structure adequatelycaptures the underlying physical phenomena. Uncertainty propagation analysis reveals important in-sights into the system’s sensitivity to parameter variations. Monte Carlo simulations using the pos-terior distributions show that temperature predictions remain robust within a ±2% range for mostspatial locations, with higher uncertainties near the boundaries. This spatial variation in predictionuncertainty highlights the importance of measurement location selection in experimental design andsuggests potential opportunities for optimization of sensor placement.The observed negative correlation between heat flux and convective heat transfer coefficient pa-rameters provides valuable physical insights. This correlation structure suggests that multiple param-eter combinations can produce similar temperature profiles, indicating a degree of parameter non-uniqueness that must be carefully considered in practical applications. The Bayesian framework nat-urally accommodates this feature through posterior distribution characterization, providing a morecomplete understanding of parameter uncertainties than point estimates alone. In terms of com-putational efficiency, both methods demonstrated acceptable performance for practical applications.DRAM required approximately 10,000 iterations for stable parameter estimates, while MCMC neededcloser to 100,000 iterations for comparable results. The additional computational cost of DRAM’sadaptive mechanism was offset by its improved convergence properties, resulting in overall betterefficiency when considering both computational time and statistical accuracy.The methodology developed in this study shows promise for extension to more complex thermalsystems. The successful handling of parameter correlations and measurement uncertainties suggeststhat similar approaches could be applied to systems with additional parameters or more complex ge-ometry. Furthermore, the clear documentation of uncertainty bounds provides valuable informationfor engineering design decisions, allowing for more robust system optimization under uncertainty.
4. Conclusion

Regularities that emerged from the study of uncertainty quantification in steady-state heat transfersystems are numerous◦. Comparing DRAM and MCMC shows that while both give good estimates ofparameters, DRAM slightly outperformed MCMC in that the true parameter was well within all thebounds of the parameter distributions had tightened. This agreement between the Bayesian methodsdiscussed and the traditional OLS estimation supports their use as an effective method in thermalsystem analysis. Observations of negative correlation between these heat flux (Φ) and convective heattransfer coefficient (h) parameters indicate nature of system, and relevance of each parameter to theother. Our findings show that contemporary statistical methods can treat and quantify uncertainties inheat transfer systems, while yielding more reliable solutions than traditional deterministic methods.These methods have proved notably effective in coping with complex parameter spaces and mea-surement uncertainties. Both DRAM and MCMC had very good convergence properties, and althoughthe parameters were explored in very high dimensionality space, DRAM with adaptive strategy wasable to explore parameter space slightly more efficiently. The agreement of results across differentmethodologies provides additional assurance in the parameter estimates and uncertainty bounds de-rived. This could pave the way to a broader usage of sophisticated uncertainty quantification tech-niques in thermal system analysis, thus laying the groundwork for future studies. particularly in sce-narios where traditional deterministic approaches may fall short.Future work in uncertainty quantification of thermal systems may include real-time parameter es-timation using machine learning coupled with DRAM/MCMC methods and employing these methodson complex geometries and multi-dimensional problems. Hybrid algorithms may remedy issues in tun-ing high-dimensional parameters and model uncertainty. Improving experimental design and building
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user-friendly tools would also help improve data efficiency and promote industrial adoption. Researchinto state-of-the art uncertainty propagation and standardizing as best practices would further benefitapplications across engineering design and industrial optimization.
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