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Multi-criteria decision-making (MCDM) focuses on managing and prioritizing 

decisions that encompass multiple criteria. The use of fuzzy soft set 

frameworks is limited in addressing certain problems when multiple and 

subdivided attributes are involved. Consequently, there was a pressing 

demand for a novel methodology capable of overcoming these challenges. To 

this end, the concept of fuzzy hypersoft matrix (FHSM) is developed. This 

paper introduces various principles related to FHSM, including operations 

like union, intersection, subsets, equality, complements, empty sets, and 

universal sets. It provides numerous apt examples to validate the defined 

notions effectively. Additionally, the paper describes the application of FHSM 

in creating a system for recognizing objects from vague data across multiple 

observers. 
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1. Introduction 

 

Making decisions and solving problems is one of the most difficult aspects of our lives. As a result, 

we must prioritize the best multiple options. Multi-attribute decision aids us in making a decision in 

this case. However, it is possible to gather unreliable information while making a decision. Decisions 

involving uncertainty must be communicated at various stages of life in order to overcome real-life 

obstacles. Uncertainty, ambiguity, and unreliability in data are the most important factors to consider 

when dealing with these issues.  

Various mathematical theories have been introduced to address these issues, including 

probability theory, fuzzy set theory [1], and rough set theory [2]. Zadeh's introduction of fuzzy set 

theory has gained significant popularity in addressing uncertainty concerns. This theory provides an 

appropriate framework for describing uncertain notions by allowing for the use of partial 

membership functions. Mathematicians and computer scientists have researched and developed 

fuzzy sets, leading to the discovery of several practical applications such as fuzzy control systems, 

fuzzy automata, fuzzy logic, and fuzzy topology.  Molodtsov [3] introduced soft set theory in 1999 as  
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a novel technique for representing uncertainty, addressing specific structural challenges of fuzzy set 

theory and other theories. 

Many researchers have made significant attempts to generalize and extend the concept of soft 

sets proposed by Molodtsov [3]. Maji et al. [4] have developed a hybrid structure called the fuzzy soft 

cluster structure by combining the fuzzy set and soft set structure. Put simply, while establishing a 

fuzzy soft set, a degree is included in the parameterization of fuzzy sets [5]. The fuzzy soft set 

structure, which is a synthesis of the soft set structure and fuzzy set structure, has been extensively 

employed by researchers, with numerous papers contributing to the existing literature [6-8].  

Researchers' great interest in this area has led to significant advancements in the application of 

fuzzy soft set structure in decision-making challenges. Unrestricted definition of unreal objects in soft 

sets allows researchers to select the desired parameter format, hence streamlining the decision-

making process and enhancing efficiency in situations where some information is absent. Maji & Roy 

[9] were the first to utilize soft sets in decision-making problems. Chen [10] explained the process of 

simplifying the parameterization of the soft set and examined its use in the decision-making problem. 

Cagman & Enginoglu [11-12] examined the concept of soft matrix and uni-int decision-making, which 

involved selecting the most favorable elements from a range of possibilities.  

This work presents a clear definition of fundamental concepts, including subset, equal set, union, 

intersection, complement, null set, and absolute set, as well as the AND and OR operations on the 

fuzzy hypersoft set structure [13-14]. In addition, we utilized fuzzy hypersoft sets to address the 

decision-making issue. By utilizing Roy & Maji's technique [15], we have formulated a suitable choice 

problem for fuzzy hypersoft sets. This paper introduces the fuzzy hypersoft set structure as a 

fundamental characteristic. Thus, it plays a crucial part in numerous following investigations [16-17]. 

Extensive research has been conducted in the literature on decision-making challenges [18], with 

numerous researchers investigating this topic [19]. The user's text is incomplete and cannot be 

rewritten in a straightforward and precise manner [20-21]. Smarandache [22] introduced a novel 

methodology for managing uncertainty. He extended the soft set to a hypersoft set by converting the 

functionality into a multi-decision function. Despite being a more recent development, the hypersoft 

set theory has garnered significant interest from scholars, as seen by studies conducted by 

researchers [23-24].  

The concepts of linguistic hypersoft set and fuzzy linguistic hypersoft set have been proposed by 

[25]. Some more optimization and decision-making approaches have been used to solve optimization 

problems [26]. The machine learning tools along with decision-making algorithms have been 

employed in many real-world examples [27-28]. Various intricate issues arise from the presence of 

ambiguous data in disciplines such as social sciences, economics, medical sciences, engineering, and 

other fields. These challenges encountered in life cannot be resolved using conventional 

mathematical tools. In classical mathematics, a model is constructed with precision and accuracy [29-

30].  

This research improves the robustness, flexibility, and usefulness of multi-criteria decision-making 

(MCDM) strategies in traversing the complexities of real-world problems by filling in the gaps in 

current methodology and introducing new ideas and tools. 

 

i. This technique is unique because it combines the structural depth of hypersoft sets with 

the elasticity of fuzzy systems. It is designed specifically to handle ambiguous information 

and multiple criterion and decision variables. Traditional MCDM techniques encounter 

numerous challenges due to the inherent ambiguity of real-world data. The fuzzy 

hypersoft matrix (FHSM) provides a method that effectively captures and analyzes the 
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inherent uncertainty present in established processes, especially in complex and dynamic 

situations.  

ii. This study has significant implications for the realm of decision-making. Firstly, it presents 

a consolidated framework that adeptly manages several factors and the lack of clarity in 

the data to establish a more precise and dependable basis for decision-making. 

Furthermore, it broadens the scope of MCDM approaches, allowing for their application 

in a wider range of scenarios, particularly those where imprecise, ambiguous, or missing 

information has previously impeded their use. Finally, this study offers relevant 

information by bridging the divide between theoretical models and their practical 

applications. It accomplishes this by demonstrating the utilization of the Fuzzy hybrid 

scatter search method in several settings. 

iii. Although the stated topics have made progress, there is still a significant research gap in 

integrating fuzzy logic and MCDM approaches with hypersoft sets. Prior research has 

focused on the incorporation of more advanced mathematical prerequisites in HSM or 

has investigated the possibility of using fuzzy logic as a separate technique. The lack of 

thorough research on the integration of hypersoft matrix (HSM) with other subjects is 

evident, and it perpetuates the existing gap in knowledge when examining MCDM. FHSM 

is a methodology that enhances decision-making in various areas that rely on intricate 

criteria, ambiguous data, or both. It has the potential for wider application in fields like 

engineering, healthcare, environmental management, and policymaking.  

 

The organization of the research paper is structured in the following manner: Section 2 provides 

preliminaries. Section 3 presents the definition and operations of hypersoft matrix theory. Section 4 

provides the MCDM algorithm. Section 5 gives a case study. Section 6 discusses the results and 

compares them with existing studies. Finally, the findings of the study and their implications with 

possible future directions are presented in Section 7. 

 

2. Preliminaries  

2.1. Soft Sets 

 

Let us consider that E is the attributive set and � is the universal set. The P(�) are expressed 

power set, � is the subset. Let � be a subset that is contained with E. � can then be defined as a soft 

set by �, which is denoted by the pair (ζ, �), where ζ: � → P(�) is a function mapping elements of � 

to subsets of the universal set �. For any element e in A, the set ζ(e) can be interpreted as the set of 

approximate elements or elements within the soft set. Therefore, the soft set specified by (ζ, �) is 

characterized by this mapping: 

 ��, �� = 	��
� ∈ ����: 
 ∈ �, ��
� = ∅    ifififif    
 ≠ ��.        (1)

 

2.2. Fuzzy Soft Sets 

 

Consider � as the universal set and ∈ as the attribute set, with P(�) representing the power set 

of �. If we assume that � is a subset of ∈, then the pair (ζ, �) defines a fuzzy soft set. This is 

characterized by its mapping as follows: 

 

 �: � → ����.        (2)
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2.3. Hypersoft Sets 

 

Let ℙ��� be the power set of �. Considering ��, ��, ��, … , �� when � ≥ 1 and suppose   be well-

defined attributes whose corresponding attributive elements are the set !�, !�, !� … !� with !" ∩!$ = ∅, where " ≠% and ",%&	1,2,3 … ��. Then, �), !� × !� × !� … !�� is called a hypersoft set 

by �, when:  

 +: !, × !- × !. … !/ → ℙ�0�.        (3)

 

In Eq. (3), if we assign values to the attributes in the form of fuzzy (membership) only, then it is 

said to be a fuzzy hypersoft set. 

 

3. Fuzzy Hypersoft Matrix 

 

In this section, we present the definition, operations, laws along with theorem, and proposition 

on FHSM. 

Let P be a set of parameters and 123 ! = 	y�, y�, y�, … y5� be a finite set. The power set of ! is 

denoted by �!�. Let 6�, 6�, 6� … 67 for  ≥ 1 be n well-defined features, whose corresponding 

feature values are the sets 8�, 8�, 8�, … 87 with 89 ∩ 8: = ∅ for ; ≠ <, ;, < = 1,2 …  , respectively, 

and let their relation be = = 8� × 8� × 8� × … × 87. Then the pair �>, = � is called an FHSS over !, 

where  >: 8� × 8� × 8� × … × 87 → ?�!� and >� 8� × 8� × 8� × … × 8@� = >�= �, where 3 ≤  : 
 B = C〈E, FGH�E �I J ∈ !〉L.        (4)

 

Let  = = 8� × 8� × 8� × … × 87 be the relation, and its characteristic function is MN: �8� × 8� ×8� × … × 87 � → ?�!�. It is defined as: 

 OE = P 〈E, FGH�E �I J ∈ !〉,E ∈ GQ, × Q- × Q. × … × QRIS.        (5)

 

If TUV = MNG�U, 8VWI, where X = 1,2, … , Y , Z = 1,2, … , 8, [ = 1,2, … ,  , then a matrix is defined as: 

 

\B]^_`×Q = ⎝
⎛B,,B-,⋮B`,

  B,-B--⋮B`-
  ……⋱…   

B,QB-Q⋮B`Q⎠
⎞.  (6)

 

3.1. Transpose of Square Fuzzy Hypersoft Matrix 

 

Let T = [TUV] be FHSM of order Y × i, where TUV = GFU VWT I. Then T@  is said to be the transpose of 

square FHSM if rows and columns of E are Interchange. It is denoted as. 

 Bj = [B] ^]j =  [F] ^ kB ]j =  [F^ k ]B ] =  [F^ ]].  (7)

Proposition 3.5. Let l = \lUV_ and m = \mUV_ be two FHSMs, where lUV = GlUVWl I and mUV = GlUVWm I. 

For two scalars n, o ∈ [0,1], then: 
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i. n�ol� = �no�l. 

ii. If n < o, then nl < ol. 

iii. If l ⊆ m, then nl ⊆ nm. 

 

Proof of Proposition 3.5. 

 

i. n�ol� = s\olUV_ = n\GolUVWl I_ = \GnolUVWl I_ = no\GlUVWl I_ = no\llUV_ = �no�l. 
ii. Since lUVWl ∈ [0,1], xo nlUVWl ≤  olUVWl . Now nl = \nlUV_ = \GnlUVWl I_ ≤ \GolUVWl I_ =\olUV_ = ol. 

iii. l ⊆ m ⇒ \lUV_ ⊆ \mUV_ ⇒  lUVWl ≤  lUVWm ⇒  nlUVWl ≤  nlUVWm ⇒ n\lUV_ ⊆ n\mUV_ ⇒ nl ⊆nm. 
 

Theorem 3.6. Let  l = \lUV_ be the FHSM of order Y × i, where lUV = GlUVWl I. Then: 

 

i.  �nl�@ = nl@, }here n ∈ [0,1]. 

ii. �l@�@ =  l. 

 

Proof of Theorem 3.6: 

 i. Here �nl�@, nl@ ∈  ����5×�, so �nl�@ = \GnlUVWl I_@ = \GnlVWUl I_ = n\GlVWUl I_ =n\GlUVWl I_@ = nl@.                                                       ii. Since l@ ∈  ����5×� l� �l@�@ ∈  ����5×�. Now, �l@�@ = �\GlUVWl I_@�@ =G\GlVWUl I_I@ = \GlUVWl I_ =  l. 
 

3.2. Trace of Fuzzy Hypersoft Matrix 

 

Let  l = \lUV_ be the square FHSM of order Y × i, where lUV = GlUVWl I, and Y = i. Then, a trace 

of FHSM is denoted as 3��l� and is defined as: 

 j��F� = ∑ [F]]kF ]`,�]�,,k�� .  (8)

 

Proposition 3.9. Let l = [lU V] be the square FHSM of order Y × i, where lU V = �lU V Wl ) and Y × i. P 

be any scalar, then 3��nl� = n 3��l�. 
 

Proof of Proposition 3.9. 3��s�� = ∑ \nlUUWl _ = n ∑ [lUUWl ]5,�U��,W��5,�U��,W�� = n 3��l�. 
 

3.3. Max-Min Product of Fuzzy Hypersoft Matrix 

 

Let l = \lUV_ and m = \mV:_ be two FHSMs, where lUV = GlUVWl I and mV: = GlVW:l I. Then, if the 

dimensions of S and m are equal (the number of columns in S equals the number of rows in A), they 

are considered conformable. If l = \lUV_5×� and m = \mV:_�×�, then l ⨂ m = [TU:]5×�. 
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Theorem 3.11. Let = \lUV_ , m = \mUV_ and ℛ = \ℛUV_ be FHSM where lUV = GlUVWl I, mUV = GlUVWm I and ℛUV = GlUVWℛ I. Then:  

 

i. l ∩ �m⨁ℛ� = �l ∩ m�⨁�l ∩ ℛ�. 

ii. �l⨁m� ∩ ℛ = �l ∩ ℛ�⨁�m ∩ ℛ�. 

iii. l ∪ �m⨁ℛ� = �l ∪ m�⨁�l ∪ ℛ�. 

iv. �l⨁m� ∪ ℛ = �l ∪ ℛ�⨁�m ∪ ℛ�. 

 

Proof of Theorem 3.11. 

 

i. l ∩ �m⨁ℛ� = GlUVWl I ∩ �� �l���l �l���ℛ �� �� = ��min �lUVWl , �l���m �l���ℛ �� ��� =
��min �  �l���l �l���m �� ,  �l���l �l���ℛ �� ��� = \GminGlUVWl , lUVWm II_⨁\GminGlUVWl , lUVWℛ II_ = \GlUVWl I ∩GlUVWm I_⨁\GlUVWl I ∩ GlUVWℛ I_ = �l ∩ m�⨁�l ∩ ℛ�. 

ii. �l⨁m� ∩ ℛ = �� �l���l �l���m �� �� ∩ GlUVWℛ I = ��min �  �l���l �l���m �� , lUVWℛ ��� =
��min �  �l���l �l���ℛ �� ,  �l���m �l���ℛ �� ��� = \GminGlUVWl , lUVWℛ II_⨁\GminGlUVWm , lUVWℛ II_  = \GlUVWl I ∩GlUVWℛ I_⨁\GlUVWm I ∩ GlUVWℛ I_ = �l ∩ ℛ�⨁�m ∩ ℛ�. 

iii. l ∪ �m⨁ℛ� = GlUVWl I ∪ �� �l���l �l���ℛ �� �� = ��max �lUVWl , �l���m �l���ℛ �� ��� =
��max �  �l���l �l���m �� ,  �l���l �l���ℛ �� ��� = \GmaxGlUVWl , lUVWm II_⨁\GmaxGlUVWl , lUVWℛ II_ = \GlUVWl I ∪GlUVWm I_⨁\GlUVWl I ∪ GlUVWℛ I_ = �l ∪ m�⨁�l ∪ ℛ�. 

iv. �F⨁m� ∪ ℛ = �� �F���F �F���m �� �� ∪ GFUVWℛ I = ��max �  �F���F �F���m �� , FUVWℛ ��� =
��max �  �F���F �F���ℛ �� ,  �F���m �F���ℛ �� ��� = \GmaxGFUVWF , FUVWℛ II_⨁\GmaxGFUVWm , FUVWℛ II_ =\GFUVWF I ∪ GFUVWℛ I_⨁\GFUVWm I ∪ GFUVWℛ I_ = �F ∪ ℛ�⨁�m ∪ ℛ�. 

 

4. Algorithm 

 

For decision-making in uncertain contexts, MCDM algorithms are invaluable tools, especially 

when applied to fuzzy hypersoft matrices. These algorithms handle alternatives and uncertainties 

present in real-world scenarios by considering several factors and using fuzzy logic to enable more 

robust and informed decision-making. Decision-makers obtain an understanding of their practical 

utility in a variety of sectors, including engineering, finance, and healthcare, through case studies that 

illustrate their applicability. The steps of our algorithm are: 

Step 1 − Create an FHSM using Eq. (6). 

Step 2 − Create a value matrix for FHSM. Let l = \lUV_ be the order's FHSM, where lUV = GlUVWl I. 
The value of matrix S is therefore denoted by V(S) with (S)= \¢UVl_ of order Y × i, where¢UVl = lUVWl . 
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Step 3 − Value matrices are used to calculate the score matrix. The score of two FHSM l = \lUV_  

and  m = \mUV_  of order Y × i is given as T�l, m� � ¢�l� £ ¢�m� and T�l, m� � \TUV_, where TUV =  ¢UVl £ ¢UVm. 

Step 4 − Utilize the score matrix to determine the overall score. The total rating of each item in 

the universal set is ¤∑ TUV7V�� ¤. 
Step 5 − To discover the best answer, choose the item with the highest score from the total score 

matrix.  

Figure 1 presents the proposed algorithm. 

 

 

Fig. 1. Proposed Algorithm. 

 

5. Case Study 

 

Let ! = 	¥�, ¥�, ¥�, ¥¦, ¥§� be the set of options. Attributes are classified as “performance” (8�) 

(i.e. to select a performance according to scale={1, 2, 3, 4}), “grades” (8�) (with grades as {A, A-, B+, 

B}), “research” (8�) (i.e. research score according to educational department as {AAA, BBB, CCC}), 

and “institute” (8¦) (i.e. government, private, and semi-government). The mapping is defined as >: �8� * 8� * 8� * 8¦� → ?�!�. Let us assume: T = H �3, A©, CCC, gov� � 	〈¥� , � 3 �0.3�,  © �0.4�, ¯¯¯ �0.6�, ±�² �0.4�〉, 〈¥� , �3 �0.2�,  © �0.5�, ¯¯¯ �0.8�, ±�²�0.5�〉, 〈¥µ , � 3 �0.3�,  ©  �0.4�, ¯¯¯ �0.5�, ±�² �0.2�〉 , 〈¥�§ , �3 �0.4�,  © �0.6�, ¯¯¯ �0.2�, ±�²�0.5�〉�. Also: 

 l = H �3, A©, CCC, gov� � 	〈¥�, � 3 �0.1�,  ©  �0.4�, ¯¯¯ �0.4�, ±�² �0.3�〉, 〈¥� , � 3 �0.2�,  © �0.6�, ¯¯¯ �0.9�, ±�²�0.6�〉 , 〈¥µ , � 3�0.2�,  ©  �0.7�, ¯¯¯ �0.6�, ±�² �0.5�〉 , 〈¥�§, �3 �0.6�,  © �0.4�, ¯¯¯ �0.4�, ±�²�0.4�〉 �. 

Then, we apply the algorithm for the calculation of total values: 

Step 1 − The above two sets of FHSSs are given as FHSMs: 

[T] = ¸3�0.3�  © �0.4�3�0.2�  © �0.5� ¯¯¯�0.6� ±�²�0.4�¯¯¯�0.8� 43±�0.5�3�0.3�  © �0.4�3�0.4�  © �0.6� ¯¯¯�0.5� ±�²�0.2�¯¯¯�0.2� ±�²�0.5�¹,  

[l] = ⎣⎢⎢
⎡3�0.1�  © �0.4�3�0.2�  © �0.6� ¯¯¯�0.4� ±�²�0.3�¯¯¯�0.9� ±�²�0.6�3�0.2�  © �0.7�3�0.6�  © �0.4� ¯¯¯�0.6� ±�²�0.5�¯¯¯�0.4� ±�²�0.4�⎦⎥⎥

⎤.  
Step 2 − Now calculate the values matrices of FHSMs as: 

[²��T�] = ⎣⎢⎢
⎡3�0.3�  © �0.4�3�0.2�  © �0.5� ¯¯¯�0.6� ±�²�0.4�¯¯¯�0.8� ±�²�0.5�3�0.3�  © �0.4�3�0.4�  © �0.6� ¯¯¯�0.5� ±�²�0.2�¯¯¯�0.2� ±�²�0.5�⎦⎥⎥

⎤,  
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[²�l�] = ⎣⎢⎢
⎡3�0.1�  − �0.4�3�0.2�  − �0.6� ¯¯¯�0.4� ±�²�0.3�¯¯¯�0.9� ±�²�0.6�3�0.2�  − �0.7�3�0.6�  − �0.4� ¯¯¯�0.6� ±�²�0.5�¯¯¯�0.4� ±�²�0.4�⎦⎥⎥

⎤.  
Step 3 − Compute the score matrix by combining the value matrices as: 

�T�T, F� = ⎣⎢⎢
⎡3�0.4�  − �0.8�3�0.4�  − �1.1� ¯¯¯�1.0� ±�²�0.7�¯¯¯�1.7� ±�²�1.1�3�0.5�  − �1.1�3�1.0�  − �1.0� ¯¯¯�1.1� ±�²�0.7�¯¯¯�0.6� ±�²�0.9�⎦⎥⎥

⎤.  
Step 4 − Compute a total score as: 

À�3Á; �Â��2 = Ã1.22.34.11.9Ä.  
Step 5 − ¥� will be the best choice. 

 

6. Discussion and Comparison 

 

Through the comparative assessment presented in Table 1. Furthermore, in the context of 

decision-making, our approach provides a richer informational basis for navigating the uncertainties 

inherent in data. Additionally, numerous configurations of FS composite structure are encapsulated 

as specific instances within FHSM. Our approach allows for a more precise and empirical 

representation of information pertaining to the subject matter, making it an advantageous tool for 

integrating imprecise and uncertain data within decision-making frameworks. Consequently, our 

method demonstrates effectiveness, adaptability, simplicity, and superiority.  

 

  Table 1 

  The result comparison with existing studies 

 Set Truthiness Attributive  
Sub-

attributive  
Parametrization  Advantages   

Zadeh [1] FS 
✓ × 

✓ × 
Addresses uncertainty through the 

application of fuzzy intervals 

Maji et al. 

[9] 
FSM 

✓ × 
✓ ✓ 

Addresses uncertainty through the 

application of fuzzy soft intervals  

Proposed  FHSM 
✓ ✓ ✓ ✓ 

Addresses uncertainty through the 

application of FHSM 

 

7. Conclusion  

 

This research delves into the essential characteristics, aggregation processes, and foundational 

principles of fuzzy set theory, emphasizing their applications and relevance in the context of 

hypersoft sets and hypersoft matrices. It further explores the critical aspects and elementary 

operations of matrices within this unique set environment. Additionally, the study outlines 

prospective pathways for future research, highlighting the potential for creating novel hybrid models 

by combining hypersoft sets with other mathematical frameworks such as fuzzy sets, rough sets, 

expert sets, and cubic sets. It also proposes the exploration of advanced algebraic constructs, 

including the development of hypersoft topological spaces, functional spaces, groups, vector spaces, 

rings, and measures. These future directions aim to expand the utility and understanding of hypersoft 

sets, offering innovative approaches to complex problem-solving and theoretical advancement in the 

field. 
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