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When selecting an environmentally friendly mode of transportation, many 
factors must be taken into account, such as capacity, delivery time, cost-
effectiveness, and environmental impact. This is a difficult decision-making 
problem since it calls for the simultaneous evaluation and prioritization of 
several criteria. A thorough and methodical approach is required to make an 
informed decision that satisfies particular transportation needs while 
adhering to sustainability goals. The process entails balancing various trade-
offs to determine the most environmentally friendly mode of transportation. 
When solving multi-attribute group decision-making (MAGDM) problems, 
prioritization is essential. Prioritization in fuzzy systems has been 
implemented through a variety of techniques and approaches. This paper 
tackles the MAGDM problem within the Pythagorean fuzzy (PyF) framework, 
taking into account the different requirements for experts and characteristics. 
We present new Aczel Alsina aggregation operators (AOs), whose efficient 
handling of uncertainties makes a major contribution to fuzzy mathematics. 
We suggest several PyF AOs, such as the PyF-prioritized Aczel Alsina 
geometric (PyFPAAG) and PyF-prioritized Aczel Alsina averaging (PyFPAAA), 
which are based on the Aczel Alsina t-norm and t-conorm. We show these AOs 
satisfy the aggregation criteria by examining their monotonicity, 
boundedness, and idempotency properties. The prioritization weights are 
derived from expert knowledge, enabling the suggested operators to capture 
the prioritization phenomenon among the aggregated arguments. Using a 
MAGDM technique, the proposed AOs are used to evaluate eco-friendly 
transportation modes. Their significance is confirmed by contrasting them 
with other well-known AOs. 

Keywords:  
Interval-value Pythagorean Fuzzy Set; 
Group Decision-Making; Prioritized 
Aggregation Operators; Eco-Friendly 
Transportation Mode. 

 

 
1. Introduction 
 

When it comes to transportation, eco-friendly techniques are those that, when compared to 
conventional modes, drastically cut emissions, energy use, and pollution. Through the use of more 
resource-efficient technologies, renewable energy sources, and cleaner technologies, these 
approaches support sustainability. Typical instances comprise strolling, riding a bike, utilizing renewa- 
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ble energy sources to run buses and trains, and drive electric cars (EVs). It is impossible to 
overestimate the importance of environmentally friendly transportation in the fight against climate 
change and environmental degradation. Conventional automobiles that run on fossil fuels have a 
significant impact on greenhouse gas emissions and air pollution. Societies can significantly lower 
their carbon footprints and lessen the negative effects of pollution by switching to environmentally 
friendly alternatives. It is critical to reduce harmful emissions, such as carbon dioxide (CO2), nitrogen 
oxides (NOx), and particulate matter. For example, the absence of exhaust gases from electric cars 
contributes to better air quality and lower risk of diseases linked to pollution. Likewise, public 
transportation networks that run on renewable energy or cleaner fuels can reduce emissions from 
individual cars and traffic jams. Using eco-friendly transportation also encourages efficiency and 
energy savings. A more sustainable energy ecosystem is facilitated by the use of renewable energy 
sources, such as solar or wind power, to charge electric vehicles. Additionally, by addressing problems 
like obesity and sedentary behavior, modes like walking and cycling not only reduce emissions but 
also encourage healthier lifestyles. By lowering the need for large infrastructure, like parking lots and 
roadways, these transportation options support sustainable urban growth. Bike lanes and public 
transportation investments encourage compact, walkable neighborhoods, which decrease land use, 
preserve green spaces, and improve the general livability of urban areas. Ku et al. [1] assessed the 
impact of environmentally friendly transportation. Ajay et al. [2] created an IoT-based management 
system for environmentally friendly urban transportation. Kuzey et al. [3] talked about 
environmentally friendly transportation initiatives and the CSR approach. Alhamrani et al. [4] created 
the best environmentally friendly transportation system. Several benefits of environmentally friendly 
transportation were emphasized by Ku et al. [5]. Guidelines for environmentally friendly 
transportation infrastructure were given by Bencekri et al. [6]. Several environmentally friendly 
transportation options were investigated by Gao et al. [7]. 

Zadeh [8] developed the fuzzy set theory (FSs) in 1965 to deal with uncertain phenomena. While 
FSs use a membership grade (MG) to represent uncertainty, they ignore the non-membership grade 
(NMG), which is also important for human evaluation. In order to get around this restriction, 
Atanassov [9] created the idea of intuitionistic fuzzy sets (IFSs), which combine MG and NMG to 
provide a more thorough representation of ambiguous phenomena. Because the total of the MG and 
NMG cannot be greater than 1, pairs like (0.9, 0.7) are invalid as intuitionistic fuzzy values (IFVs) in 
IFSs. Furthermore, IFSs compute the hesitancy grade (HG), which is derived by deducting the sum of 
MG and NMG from 1. This allows them to quantify the hesitancy of human judgment. [10] 
Pythagorean fuzzy subsets (PyFSs) are a new evaluation format that Yager recently proposed to 
capture more meaningful information in imprecise and uncertain situations [11,12]. PyFSs are 
defined by the degrees of membership and non-membership that meet the requirement that the 
total squared of these degrees do not exceed 1 [12]. With the help of this framework, uncertainty 
can be represented more adaptable and decision-making in fuzzy environments can be done with 
greater freedom [13-14]. 

In fuzzy mathematics, Aczel-Alsina aggregation operators (AOs) have undergone substantial 
development [15-17]. When solving classification problems with different t-norms (TNs) and t-
conorms (TCNs), Farahbod and Eftekhari [18] discovered that the Aczel-Alsina TN was particularly 
helpful. This paper presents prioritized AOs for intuitionistic fuzzy sets (IFS) based on Aczel-Alsina TN 
and TCN, given the importance of these AOs and the necessity of prioritization in aggregation 
processes. By using intuitionistic fuzzy values (IFVs), these AOs will make data aggregation easier 
while preserving a hierarchy of expert or attribute prioritization. Certain experts and attributes may 
be given priority in multi-attribute group decision-making (MAGDM) problems. Yager [19] first put 
forth the concept of prioritized aggregation operators (AOs) in 2008, emphasizing the significance of 
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these entities in certain circumstances. Yan et al. [20] extended the prioritization research, while Yu 
and Xu [21] introduced prioritized AOs for intuitionistic fuzzy (IF) information. Prioritization for 
linguistic IF information aggregation was proposed by Arora and Garg [22], while Ali et al. [23] 
investigated it in the context of complex IF soft sets for MAGDM problems. Gao [24] used Einstein t-
norms and t-conorms to create prioritized AOs for Pythagorean fuzzy information, while Chen [25] 
covered interval-valued prioritized AO comparison points for MAGDM issues. Prioritized AOs for 
bipolar fuzzy information were created by Jana et al. [26] using Dombi t-norms and t-conorms. 
Prioritized AOs for generalized orthopair fuzzy sets were studied by Riaz et al. [27]. 

The key features of the manuscript are as follows: 
 

i. The introduction of IVPyFPAAG and IVPyFPAAA operators, which are prioritized AOs based 
on Aczel-Alsina TN and TCN in IVIF data. 

ii. An analysis of the IVPyFPAAG and IVPyFPAAA operators that are being proposed. 
iii. Examination of the suggested prioritized AOs' characteristics. 
iv. MAGDM problem solved with the help of the IVPyFPAAG and IVPyFPAAA operators. 
v. Comparison of the results with other ongoing AOs and the IVPyFVs' suggested prioritized 

AOs. 
 

The work is organized as follows: Section 2 covers some foundational concepts in detail. The 
proposed interval-valued Pythagorean fuzzy prioritized Aczel-Alsina averaging (IVPyFPAAA) and 
interval-valued Pythagorean fuzzy prioritized Aczel-Alsina geometric (IVPyFPAAG) operators are 
introduced and their properties are examined in Section 3. In Section 4, an algorithm for MAGDM 
based on the IVPyFPAAG and IVPyFPAAA operators is presented. Section 5 provides a comprehensive 
example of the decision-making process. A comparison between the proposed techniques and 
established methods is given in Section 6. The article concludes with a summary and final thoughts 
in Section 7. 

 
2. Methodology 
 

Atanassov [9] introduced the concept of Interval-Valued Pythagorean Fuzzy Sets (IVPyFS) as an 
extension of fuzzy sets (FS). While fuzzy sets provide a membership grade (MG) indicating the degree 
of an element's membership in a set, Intuitionistic Fuzzy Sets (IFS) extend this by providing both a 
membership grade (MG) and a non-membership grade (NMG). For fuzzy sets, the MG is a real number 
between 0 and 1, and the same applies to the NMG. Additionally, the sum of the MG and NMG must 
be less than or equal to 1. 

Definition 𝟣 [9]. Let F be considered a universe of discourse, an IVPyFS in F is an expression ϱ 
given by: 

 
𝜎 = {(𝜉, [𝜓𝜎

𝑙 (𝜉), 𝜓𝜎
𝑈(𝜉)], [ℳ𝜎

𝑙 (𝜉),ℳ𝜎
𝑈(𝜉)])| 𝜉 ∈ 𝐹}, (1) 

 
where [𝜓𝜎

𝑙 (𝜉), 𝜓𝜎
𝑈(𝜉)]: 𝐹 → [0, 𝟣] and [ℳ𝜎

𝑙(𝜉),ℳ𝜎
𝑈(𝜉)]: 𝐹 → [0, 𝟣] including the condition 0 ≤

𝜓𝜎
2𝑈(𝜉) +ℳ𝜎

2𝑈(𝜉) ≤ 𝟣 for each 𝜉 in  𝐹. The intervals 𝜓𝜎
2𝑙(𝜉), 𝜓𝜎

2𝑈(𝜉) and ℳ𝜎
2𝑙(𝜉),ℳ𝜎

2𝑈(𝜉) serve as 
MD and NMD of the element 𝜉 in the set 𝐹. For every IVPyFS 𝜎 in 𝐹, we denote 𝜋𝜎(𝜉) =

[√(𝟣 − (𝜓𝜎
2𝑈(𝜉) +ℳ𝜎

2𝑈(𝜉))) , (√𝟣 − (𝜓𝜎
2𝑙(𝜉) +ℳ𝜎

2𝑙(𝜉)))] , ∀ 𝜉 ∈ 𝐹. Then, 𝜋𝜎(𝜉) is known as 

the hesitancy degree (HD) of 𝜉 to 𝜎. Further, ([𝜓𝜎
𝑙 (𝜉), 𝜓𝜎

𝑈(𝜉)], [ℳ𝜎
𝑙 (𝜉),ℳ𝜎

𝑈(𝜉)]) is known by 
Interval-value Pythagorean fuzzy value (IVPyFV).  
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Definition 2 [28]. Let 𝜎𝟣 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be an IVPyFV. Then, the score value of 𝜎𝟣 is: 

 

𝑆𝑐𝑜(𝜎𝟣) =
𝜓𝜎𝟣
𝑙 + 𝜓𝜎𝟣

𝑈 −ℳ𝜎𝟣
𝑙 −ℳ𝜎𝟣

𝑈

2
, (2) 

 
and the degrees of accuracy of 𝜎𝟣 is: 

 

𝐴𝑐𝑐(𝜎𝟣) =
𝜓𝜎𝟣
𝑙 + 𝜓𝜎𝟣

𝑈 +ℳ𝜎𝟣
𝑙 +ℳ𝜎𝟣

𝑈

2
. (3) 

 
Definition 3 [29]. The Aczel-Alsina t-norms (𝛵𝐴

𝕠)𝕠𝜖[0,∞] is ascertained by: 

 

(𝛵𝐴
𝕠)(ℓ,𝑣) = {

𝛵𝐷(ℓ, 𝑣)      𝑖𝑓  𝕠 = 0 

𝑚𝑖𝑛(ℓ, 𝑣)   𝑖𝑓 𝕠 = ∞

𝑒𝑥𝑝−((−𝘓𝘕ℓ)
𝕠+(−𝘓𝘕𝑣)𝕠)

𝟣
𝕠
        

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4) 

 
and the Aczel-Alsina t-conorms (𝑆𝐴

𝕠)𝕠𝜖[0,∞] is ascertained by: 

 

(𝑆𝐴
𝕠)(ℓ,𝑣) = {

𝑆𝐷(ℓ, 𝑣)      𝑖𝑓  𝕠 = 0 

𝑚𝑎𝑥(ℓ, 𝑣)   𝑖𝑓 𝕠 = ∞

𝟣 − 𝑒𝑥𝑝
−((−𝘓𝘕(𝟣−ℓ))

𝕠
+(−𝘓𝘕(𝟣−𝑣))

𝕠
)

𝟣
𝕠
        

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (5) 

 

where limiting values are 𝛵𝐴
∞ = 𝑚𝑖𝑛, 𝛵𝐴

0 = 𝛵𝐷, 𝛵𝐴
𝟣 = 𝛵𝑝, 𝑆𝐴

∞ = 𝑚𝑎𝑥, 𝑆𝐴
0 = 𝑆𝐷, and 𝑆𝐴

𝟣 = 𝑆𝑝. The t-

norm 𝛵𝐴
𝕠  and t-conorm 𝑆𝐴

𝕠 are dual with regard to each other for all 𝕠𝜖[0,∞].  

Definition 4 [13]. Let 𝜎 = [(𝜓𝜎
𝑙 ,ℳ𝜎

𝑙), (𝜓𝜎
𝑈 ,ℳ𝜎

𝑈)], 𝜎𝟣 = [(𝜓𝜎𝟣
𝑙 ,ℳ𝜎2

𝑙 ), (𝜓𝜎𝟣
𝑈 ,ℳ𝜎2

𝑈 )], and 𝜎2 =

[(𝜓𝜎𝟣
𝑙 ,ℳ𝜎2

𝑙 ) , (𝜓𝜎𝟣
𝑈 ,ℳ𝜎2

𝑈 ) ] be three IVPyFVs, with 𝕠 ≥ 𝟣 and 𝜍 ≥ 0. Then, the Aczel-Alsina t-norm 

and t-conorm operations of IVPyFVs are defined as: 
 

𝜎𝟣⊕𝜎2 =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝜎2

2𝑙 ))
𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝜎2

2𝑈))
𝕠
)

𝟣
𝕠

]
 
 
 
 

 ,

[
 
 
 
√
𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎𝟣
2𝑙 ))

𝕠
+(−𝘓𝘕(ℳ𝜎2

2𝑙 ))
𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
+(−𝘓𝘕(ℳ𝜎2𝑈

2𝑈 ))
𝕠
)
𝟣/𝕠

]
 
 
 

)

 
 
 
 
 
 

, (6) 

 

𝜎𝟣⊗𝜎2 =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−((−𝘓𝘕(𝜓𝜎𝟣
2𝑙 ))

𝕠
+(−𝘓𝘕(𝜓𝜎2

2𝑙 ))
𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−((−𝘓𝘕(𝜓𝜎𝟣
2𝑈))

𝕠
+(−𝘓𝘕(𝜓𝜎2

2𝑈))
𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−ℳ𝜎𝟣
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−ℳ𝜎2

2𝑙 ))
𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−ℳ𝜎𝟣
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−ℳ𝜎2

2𝑙 ))
𝕠
)

𝟣
𝕠

]
 
 
 
 

)

 
 
 
 
 
 

, (7) 
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𝜍𝜎 =

(

 
 
 
 
   

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎
2𝑙))

𝕠
)

𝟣
𝕠
,
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 

,

  [
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎
2𝑙))

𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎
2𝑈))

𝕠
)
𝟣/𝕠

]

)

 
 
 
 
 

, (8) 

 

𝜎𝜍 =

(

 
 
 
 
 
 

[
 
 
 
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝜓𝜎
2𝑙))

𝕠
)

𝟣
𝕠
,
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝜓𝜎
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 

  ,

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−ℳ𝜎
2𝑙))

𝕠
)

𝟣
𝕠
,
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−ℳ𝜎
2𝑈))

𝕠
)
𝟣/𝕠

]
 
 
 

)

 
 
 
 
 
 

. (9) 

 

Definition 5. Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs and 
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎𝜏 =

(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎𝟣,
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎2, … ,
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎∅)
𝛵

 shows a weight vector of 𝜎𝜏(𝜏 = 𝟣, 2, … , ∅) in a manner that 

allows 𝜎𝜏 ∈ [0, 𝟣] , 𝜏 = 𝟣, 2, …∅, and ∑ ∅𝜏 = 𝟣∅
𝜏=𝟣 . So, the IVPyFPAAA operator of dimension ∅ is: 

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, . . , 𝜎∅) = (
(𝟣 − ∏ (𝟣 − 𝜓𝜎𝜏

2𝑙)
∅𝜏
, 𝟣 − ∏ (𝟣 − 𝜓𝜎𝜏

2𝑈)
∅𝜏∅

𝜏=𝟣
∅
𝜏=𝟣 ) ,

(∏ (ℳ𝜎𝜏
2𝑙)

∅𝜏∅
𝜏=𝟣 , ∏ (𝜓𝜎𝜏

2𝑈)
∅𝜏∅

𝜏=𝟣 )
).  (10) 

 
3. Interval-value Pythagorean Fuzzy Prioritized Aczel-Alsina Averaging Aggregation Operators 
 

In this section, we present a few IVPyFPAAA operators by means of the Aczel-Alsina operations. 
Throughout the article, (τ=1,2…,∅)  will stand for indexing terms. 

Definition 6: Let  𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be an accumulation of IVPyFVs. Then, the 

IVPyFPAAA operator is defined as: 
 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =⊕𝜏=𝟣
∅ 𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎𝜏.  (11) 

 

Theorem 𝟣: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Then, the aggregated 

value of 𝜎𝜏 by utilizing the IVPyFPAAA operator is also an IVIFV given by: 
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𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,

√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,

√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  (12) 

 
Proof of Theorem 1 is provided Appendix-1. 

Theorem 2: If all 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) = ([𝜓𝜎
𝑙 , 𝜓𝜎

𝑈], [ℳ𝜎
𝑙 ,ℳ𝜎

𝑙 ]) = 𝜎, that is 𝜎𝜏 = 𝜎 for 

all 𝜏. Then, 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) = 𝜎. 
Proof of Theorem 2 is provided Appendix-2. 

Theorem 3: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Let 𝜎− =

𝑚𝑖𝑛(𝜎𝟣, β2, … , 𝜎∅) and 𝜎+ = 𝑚𝑎𝑥(𝜎𝟣, β2, … , 𝜎∅). Then, 𝜎− ≤ 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ≤ 𝜎+. 
Proof of Theorem 3 is provided Appendix-3. 
Theorem 4: Let 𝜎𝜏 and  𝜎𝜏

′ be two sets of IVPyFVs. If 𝜎𝜏 ≤ 𝜎𝜏
′ for all 𝜏, then: 

 
𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ≤ 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣

′ , 𝜎2
′ , … , 𝜎∅

′).  (13) 

 
Proof of Theorem 4: Straightforward. 

Theorem 5: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]), be a collection of IVPyFVs. Also, 

𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs 𝜎𝑘 . If 𝛼 = (𝜓𝛼 , 𝜓𝛼) is IVPyFVs 

on 𝑘, then: 
 
𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼, 𝜎2⊕𝛼,… , 𝜎∅⊕𝛼) = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕ 𝛼.  (14) 

 
Proof of Theorem 5 is provided Appendix-4. 

Theorem 6: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Also, 𝛵𝜏 =

∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the  score of 𝜎𝑘. If 𝜍 > 0, then: 

 
𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜍𝜎𝟣, 𝜍𝜎2, … , 𝜍𝜎∅) = 𝜍𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅).  (15) 

 
Proof of Theorem 6 is provided Appendix-5. 

Theorem 7: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs, and 𝛵𝜏 =

∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs 𝜎𝑘 . If 𝜍 > 0, 𝛼 =

([𝜓𝛼
𝑙 , 𝜓𝛼

𝑈], [ℳ𝛼
𝑙 ,ℳ𝛼

𝑙 ]) is IVPyFVs on 𝑘. Then: 
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𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜍𝜎𝟣⊕𝛼, 𝜍𝜎2⊕𝛼,… , 𝜍𝜎∅⊕𝛼) = 𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕ 𝛼.  (16) 

 
Proof of Theorem 7 is provided Appendix-6. 

Theorem 8: Let 𝜎𝜏=([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) and 𝛼𝜏=([𝜓𝛼𝜏
𝑙 , 𝜓𝛼𝜏

𝑈 ], [ℳ𝛼𝜏
𝑙 ,ℳ𝛼𝜏

𝑈 ]) be two collections 

of IVPyFVs, and 𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, 𝑆(𝜎𝑘) be the score of IVPyFVs 𝜎𝑘. Then: 

 
𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼𝟣, 𝜎2⊕𝛼2, … , 𝜎∅⊕𝛼∅)  
= 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕  𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝛼𝟣, 𝛼2, … , 𝛼∅). 

(17) 

 
Proof of Theorem 8 is provided Appendix-7. 

Definition 7: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Then: 

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … 𝜎∅) =⊗𝜏=𝟣
∅ 𝜎𝜏

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣 .  

(18) 

 

The function IVPyFPAAG is called the IVPyFPAAG operator, where 𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 

𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs 𝜎𝑘. 

Theorem 9: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Then, an aggregated 

value by using the IVPyFPAAG operator is also IVPyFVs given by: 
 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,

√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 
 

,

[
 
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,

√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

.  (19) 

 
Proof of Theorem 9 is provided Appendix-8. 
The IVPyFPAAG operator is likely to satisfy the properties listed below, which are provided in 

Theorems 10-𝟣2. 

Theorem 𝟣0: If all 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) are a collection of IVPyFVs, 

where 𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs (𝜎𝑘). If all 𝜎𝜏 = 𝜎 for 

all 𝜏, then 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅) = 𝜎. 
Proof of Theorem 10 is provided Appendix-9. 

Theorem 𝟣1: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Let 𝜎− =

𝑚𝑖𝑛(𝜎𝟣, β2, … , 𝜎∅) and 𝜎+ = 𝑚𝑎𝑥(𝜎𝟣, β2, … , 𝜎∅). Then, 𝜎− ≤ 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅) ≤ 𝜎+. 
Proof of Theorem 11 is provided Appendix-10. 

Theorem 𝟣2: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]), be a collection of IVPyFVs, where 

𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs(𝜎𝑘). If 𝛼 = (𝜓𝛼 , 𝜓𝛼) is 

IVPyFVs on 𝑘, then: 
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𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣⊗𝛼, 𝜎2⊗𝛼,… , 𝜎∅⊗𝛼) = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅)⊗ 𝛼.  (20) 

  
Proof of Theorem 12: Proof Theorem 5 can be used to prove Theorem 𝟣2, too. 

Theorem 𝟣3: Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]), be a collection of IVPyFVs, where 

𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs(𝜎𝑘). If 𝑟 > 0, then: 

 
𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣

𝑟, 𝜎2
𝑟 , … , 𝜎∅

𝑟) = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅)
𝑟.  (21) 

  
Proof of Theorem 13: Proof of Theorem 6 can be used to prove Theorem 𝟣3, too. 

Theorem 𝟣4:  Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]), be a collection of IVPyFVs, where 

𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) is the score of IVPyFVs(𝜎𝑘). If 𝑟 > 0, 𝛼 = (𝜓𝛼 , 𝜓𝛼)  

is IVPyFVs on 𝑘. Then: 
 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣
𝑟 ⊗𝛼, 𝜎2

𝑟⨂𝛼,…𝜎∅
𝑟⨂𝛼) = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅)

𝑟⨂𝛼.  (22) 

       
Proof of Theorem 14: Proof of Theorem 7 can be used to prove Theorem 𝟣4, too. 

Theorem 𝟣5: Let 𝜎𝜏=([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) and 𝛼𝜏=([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be two collections 

of IVPyFVs. Also, 𝛵𝜏=∏ 𝑆 (𝜎𝑘)
𝜏−𝟣
𝑘=𝟣 (𝜏 = 2,…∅), 𝛵𝟣 = 𝟣, and 𝑆(𝜎𝑘) be the score of IVIFVs𝜎𝑘. Then: 

 
𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣⊗𝛼𝟣, 𝜎2⊗𝛼2, … , 𝜎∅⊗𝛼∅)  
= 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅)⊗  𝐼𝑉𝐼𝐹𝑃𝐴𝐴𝐺(𝛼𝟣, 𝛼2, … , 𝛼∅).  

(23) 

       
Proof of Theorem 15: Proof of Theorem 8 can be used to prove Theorem 𝟣5, too. 

 
4. MAGDM Methods by using Investigated Operators Based on IVPyFVs 
 

We will take the following actions to put the recommended aggregation operators into practice 
for a MAGDM methodology in the IVPyF environment. For example, let 𝑘 = {𝑘𝟣, 𝑘2, … 𝑘𝑚} be the set 
of alternatives. Assume that the set of criteria is 𝐴 = {𝑎𝟣, 𝑎2, … , 𝑎𝑛}. Using a linear ordering such 
that 𝑎𝟣 > 𝑎2 > 𝑎3, … , 𝑎𝑛, we have 𝐴 = {𝑎𝟣, 𝑎2, … , 𝑎𝑛}. This ordering suggests that if 𝑎𝜏 are criteria, 

then 𝜏 < 𝑖, implies that 𝑎𝜏 is more important than 𝑎𝑖. Assume that 𝐸 = {𝑒𝟣, 𝑒2, … , 𝑒𝑝} represents the 

group of decision-makers. The linear hierarchy 𝑒𝟣 > 𝑒2 >,… ,> 𝑒𝑝 implies a hierarchy between 

them, with 𝑒𝑥𝑝𝑞 and 𝑘𝑖   serving as decision-makers. 𝜕 < 𝜏 Implies that 𝑒𝑥𝑝𝑞 is more important than 

𝑘𝑖. Considering IVPyFVs, (𝜓𝑖𝜏
𝑞 , 𝜓𝑖𝜏

𝑞 ) indicates the degree range in which the alternative 𝑘𝑖  satisfies the 

attribute 𝑐𝜏 expressed be the decision maker 𝑒𝑥𝑝𝑞, such that (𝜓𝑖𝜏
𝑞 , 𝜓𝑖𝜏

𝑞 ) ⊂ (0, 𝟣), (𝜓𝑖𝜏
𝑞 + 𝜓𝑖𝜏

𝑞 ) ≤ 𝟣 

(𝑖 = 𝟣, 2, …𝑚;  𝜏 = 𝟣, 2, …𝑛). 
If all the attributes 𝑎𝜏(𝜏 = 𝟣, 2, … , 𝑛) are of the same type, then the attribute values do not need 

normalization. Otherwise, we normalize the decision-maker matrix 𝐾𝑞 = (𝐾𝑖𝜏
𝑞)

𝑚𝑥𝑛
 into 𝑅𝑞 =

(𝑟𝑖𝜏
𝑞)

𝑚𝑥𝑛
, where: 

 

𝑟𝑖𝜏
𝑞
= {

𝑘𝑖𝜏
𝑞
, for the benefit attribute 𝑎𝜏

𝑘𝑖𝜏
𝑞
, for the cost attribute 𝑎𝜏

.  (24) 

       
Step 𝟣: Calculate the values of  𝛵𝑖𝜏

𝑞 as: 

 
𝛵𝜏=∏ 𝑆 (𝑟𝑖𝜏

𝑞
)𝜏−𝟣

𝑘=𝟣 (𝑞 = 2,…𝑝), 𝛵𝑖𝜏
𝟣 = 𝟣.  (25) 
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Step 2: To aggregate all the individual IVPyF decision matrices 𝑅𝑞 = (𝑟𝑖𝜏
𝑞
)
𝑚𝑥𝑛

(𝑞 = 2,…𝑝) into 

the collective IVPyF decision matrix  𝑅 = (𝑟𝑖𝜏)𝑚𝑥𝑛 utilize the IVPyFPAAA operator: 
 

𝑟𝑖𝜏 = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝑖𝜏
𝟣, 𝜎𝑖𝜏

2, … , 𝜎𝑖𝜏
𝑝
∅) 

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(𝟣−𝜓𝜎𝜏

2𝑙 ))
𝕠

∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(𝟣−𝜓𝜎𝜏

2𝑈))
𝕠

∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(ℳ𝜎𝜏

2𝑙))
𝕠

∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(ℳ𝜎𝜏

2𝑈))
𝕠

∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

,  
(26) 

      
or the IVPyFPAAG operator: 

 
𝑟𝑖𝜏 = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝑖𝜏

𝟣, 𝜎𝑖𝜏
2, … 𝜎𝑖𝜏

𝑝
∅) 

=

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(ℳ𝜎𝜏

2𝑙))
𝕠

∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(ℳ𝜎𝜏

2𝑈))
𝕠

∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(𝟣−𝜓𝜎𝜏

2𝑙 ))
𝕠

∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(𝑝)
(−𝘓𝘕(𝟣−𝜓𝜎𝜏

2𝑈))
𝕠

∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

.  
(27) 

      
Step 3: Calculate the values of 𝛵𝑖𝜏 as: 
 

𝛵𝜏=∏ 𝑆 (𝑟𝑖𝜏
𝑞
)𝜏−𝟣

𝑘=𝟣 (𝑞 = 2,…𝑝), 𝛵𝑖𝜏
𝟣 = 𝟣.  (28) 

       
Step 4: Aggregate IVPyFVs as: 
 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,

√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 
 

,

[
 
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠
,

√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

,  (29) 

       
or as: 
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𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,

√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 
 

,

[
 
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,

√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

.  (30) 

       
Step 5: Rank all the alternatives by the score function as: 

 

𝐼𝑆𝑐𝑜(𝜎𝑖) =
𝜓𝜎𝟣
𝑙 +𝜓𝜎𝟣

𝑈 −ℳ𝜎𝟣
𝑙 −ℳ𝜎𝟣

𝑈

2
  𝑖 = 𝟣, 2, …𝑚,  (31) 

 
where the bigger the value of 𝑆(𝑟𝑖) means the larger the overall IVPyFVs (𝑟𝑖) and thus the alternative 
𝑘𝑖(𝑖 = 𝟣, 2, …𝑚). 
 
5. Practical Example 
 

When choosing how to distribute its products, a manufacturing company gives priority to 
environmentally friendly transportation options. Based on a number of variables, the company is 
weighing four distinct transportation options in order to make an informed choice. Below is a brief 
discussion of these options: 
 

i. Electric vehicles (𝐾𝟏) − By running on electricity, electric trucks lessen their dependency 
on fossil fuels. Since they do not have internal combustion engines but rather electric 
motors, they emit no tailpipe emissions. When paired with renewable energy sources for 
charging, this leads to notably reduced greenhouse gas emissions when compared to 
traditional diesel trucks. 

ii. Biofuel-powered airplanes (𝐾𝟐) − Renewable biofuels made from waste materials, plants, 
or algae are used in biofuel-powered aircraft. These biofuels are intended to minimize 
carbon emissions and lessen dependency on traditional aviation fuels derived from fossil 
fuels. The aviation sector is still experimenting with biofuels, though, because of their 
inconsistent availability and scalability. 

iii. Rail transportation (𝐾𝟑) − Rail transportation is renowned for its low environmental 
impact and energy efficiency. An environmentally friendly method of transporting goods 
over land is through diesel-powered locomotives or electrically powered trains running 
on electrified lines. Trains are effective for long-distance transportation because they can 
carry heavy loads and emit fewer emissions per ton-mile. 

iv. Hybrid cargo ships (𝐾𝟒) − In order to lower fuel consumption and pollution, hybrid cargo 
ships blend traditional fuel with alternative energy sources like electricity or wind power. 
In addition to conventional engines, these ships frequently make use of technologies like 
sails, solar panels, or batteries. They use less harmful energy sources, but they still use 
some conventional fuels, so emissions are decreased but not completely eliminated. 
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v. Solar-powered delivery drones (𝐾𝟓) − Delivery drones that run on solar energy consume 
less fossil fuel and emit fewer greenhouse gases when they propel themselves. They can 
function independently and are appropriate for small package deliveries. In cities, these 
drones provide an environmentally friendly last-mile delivery option. 

 
The following standards are used by the company to assess the available transportation options: 

 

i. Environmental effect (𝑎𝟏) − This criterion evaluates each mode of transportation's overall 
environmental impact, taking into account things like pollution, carbon emissions, and 
ecological footprint. 

ii. Cost efficiency (𝑎𝟐) − This criterion determines the total cost of utilizing a mode of 
transportation, accounting for initial, continuous, and maintenance costs. 

iii. Delivery time (𝑎𝟑) − This criterion assesses the speed and dependability with which each 
mode of transportation can deliver goods to their designated destination. 

iv. Capacity (𝑎𝟒) − This criterion establishes the maximum weight or volume that each mode 
of transportation can safely handle. 

 
The candidates 𝐾𝑖(𝑖 = 𝟣, 2, … 5) were assessed by three decision-makers in relation to the 

attributes  𝐴𝜏(𝜏 = 𝟣, 2, … ,5) and three IVPyF decision matrices were created  𝐷𝑞 = (𝑑𝑖𝜏
𝑞 )

5𝑥4
(𝑞 =

𝟣, 2,3) and given in Tables 1-3. Normalization of the decision matrices was not required because all 
of the attributes 𝐾𝑖(𝑖 = 𝟣, 2, … 5) were of the same type. 
 
  Table 1 
  Interval-value Pythagorean fuzzy decision matrix 𝑒𝟣 
 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

𝒌𝟏 [0.44,0.48] [0.34,0.44] [0.35,0.45] [0.34,0.42] [0.33,0.54] [0.36,0.44] [0.34,0.53] [0.35,0.45] 
𝒌𝟐 [0.38,0.54] [0.35,0.48] [0.44,0.48] [0.31,0.44] [0.45,0.53] [0.43,0.46] [0.33,0.48] [0.33,0.44] 
𝒌𝟑 [0.45,0.52] [0.33,0.45] [0.42,0.55] [0.37,0.53] [0.37,0.55] [0.43,0.49] [0.37,0.51] [0.36,0.45] 
𝒌𝟒 [0.45,0.54] [0.42,0.47] [0.36,0.59] [0.39,0.56] [0.35,0.56] [0.34,0.52] [0.39,0.55] [0.35,0.47] 
𝒌𝟓 [0.37,0.49] [0.37,0.42] [0.35,0.58] [0.37,0.45] [0.44,0.59] [0.45,0.54] [0.36,0.56] [0.38,0.41] 

 
  Table 2 
  Interval-value Pythagorean fuzzy decision matrix 𝑒2 
 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

𝒌𝟏 [0.36,0.53] [0.37,0.41] [0.34,0.52] [0.34,0.45] [0.34,0.54] [0.34,0.45] [0.45,0.48] [0.34,0.52] 
𝒌𝟐 [0.45,0.53] [0.44,0.45] [0.42,0.52] [0.42,0.48] [0.45,0.56] [0.33,0.48] [0.42,0.53] [0.43,0.45] 
𝒌𝟑 [0.42,0.58] [0.38,0.53] [0.44,0.59] [0.44,0.53] [0.38,0.51] [0.26,0.49] [0.48,0.57] [0.46,0.48] 
𝒌𝟒 [0.42,0.56] [0.26,0.54] [0.48,0.59] [0.46,0.55] [0.48,0.56] [0.38,0.52] [0.49,0.54] [0.35,0.49] 
𝒌𝟓 [0.39,0.43] [0.22,0.39] [0.46,0.59] [0.42,0.57] [0.44,0.55] [0.37,0.54] [0.38,0.56] [0.32,0.45] 

 
  Table 3 
  Interval-value Pythagorean fuzzy decision matrix 𝑒3 
 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

𝒌𝟏 [0.33,0.47] [0.34,0.43] [0.45,0.58] [0.45,0.54] [0.43,0.56] [0.45,0.49] [0.45,0.56] [0.38,0.56] 
𝒌𝟐 [0.45,0.48] [0.31,0.46] [0.45,0.57] [0.42,0.52] [0.38,0.53] [0.43,0.47] [0.43,0.51] [0.36,0.53] 
𝒌𝟑 [0.43,0.45] [0.35,0.44] [0.37,0.48] [0.38,0.45] [0.41,0.55] [0.42,0.45] [0.44,0.58] [0.39,0.57] 
𝒌𝟒 [0.36,0.41] [0.29,0.34] [0.35,0.57] [0.39,0.52] [0.46,0.57] [0.38,0.46] [0.43,0.52] [0.34,0.52] 
𝒌𝟓 [0.38,0.59] [0.43,0.52] [0.38,0.59] [0.35,0.51] [0.45,0.53] [0.36,0.47] [0.45,0.56] [0.42,0.53] 

 
When utilizing the IVPyFPAAA operator, the main steps are as follows since the attribute values 
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do not need to be normalized after changing type: 

Step 𝟣: The values of 𝛵𝑖𝜏
𝟣 , 𝛵𝑖𝜏

2 , and 𝛵𝑖𝜏
3  are: 

𝛵𝑖𝜏
𝟣 =

(

 
 

𝟣
𝟣
𝟣
𝟣
𝟣

𝟣
𝟣
𝟣
𝟣
𝟣

𝟣    
𝟣    
𝟣    
𝟣    
𝟣    

𝟣
𝟣
𝟣
𝟣
𝟣)

 
 
,  𝛵𝑖𝜏

2 =

(

 
 

0.06
0.04
0.08
0.05
0.03

0.02
0.07
0.03
0.01
0.06

0.04   
0.04   
0.01   
0.03  
0.02   

0.04
0.02
0.03
0.06
0.07)

 
 
, and 𝛵𝑖𝜏

3 =

(

 
 

0.003
0.002
0.004
0.003
0.002

0.001
0.001
0.001
0.000
0.002

0.002      
0.004     
0.000   
0.002    
0.001   

0.001
0.001
0.002
0.005
0.005)

 
 

.  

Step 2: By utilizing the IVPyFPAAA operator, each distinct IVPyF decision matrix 𝑅𝑞 =

(𝑟𝑖𝜏
𝑞)

4𝑥5
(𝑞 = 𝟣, 2,3) was aggregated into the collective IVPyF decision matrix 𝑅 = (𝑟𝑖𝜏)5𝑥4, as shown 

in Table 4. 
 
  Table 4 
  Collective interval-value Pythagorean fuzzy decision matrix 𝑅 by the IVPyFPAAA operator 
 𝒂𝟏 𝒂𝟐 
𝒌𝟏 [0.4359,0.4829] [0.3416,0.4383] [0.3499,0.4514] [0.3401,0.4205] 
𝒌𝟐 [0.3833,0.5395] [0.3531,0.4787] [0.4388,0.4828] [0.3161,0.4425] 
𝒌𝟑 [0.4478,0.5247] [0.3335,0.4555] [0.4206,0.5512] [0.3719,0.5299] 
𝒌𝟒 [0.4473,0.5407] [0.4105,0.4726] [0.3609,0.5900] [0.3904,0.5599] 
𝒌𝟓 [0.3707,0.4886] [0.3642,0.4192] [0.3575,0.5806] [0.3726,0.4561] 

 𝑎3 𝑎4 
𝒌𝟏 [0.3306,0.5400] [0.3594,0.4404] [0.3447,0.5284] [0.3497,0.4523] 
𝒌𝟐 [0.4498,0.5313] [0.4253,0.4608] [0.3320,0.4810] [0.3316,0.4402] 
𝒌𝟑 [0.3701,0.5497] [0.4285,0.4900] [0.3743,0.5122] [0.3628,0.4511] 
𝒌𝟒 [0.3542,0.5600] [0.3410,0.5199] [0.3964,0.5494] [0.3500,0.4712] 
𝒌𝟓 [0.4400,0.5891] [0.4479,0.5399] [0.3618,0.5600] [0.3762,0.4128] 

 
Step 3: The values of 𝛵𝑖𝜏 were computed as: 

𝛵𝑖𝜏 =

(

 
 

𝟣
𝟣
𝟣
𝟣
𝟣

0. 𝟣23
0.357
0. 𝟣𝟣5
0. 𝟣42
0.477

 

0.001
0.003
0.002
0.000
 0.002  

0.000
0.000
0.000
0.000
0.000)

 
 

.  

Step 4: The IVPyFPAAA operator was used to combine all of the desire values 𝑟𝑖𝜏(𝑖 = 𝟣, 2, … ,5) 
on the i-th line of 𝑅 to obtain the overall preference values as r1=[[0.4276, 0.4797], [0.3414, 0.4363]], 
r2=[[0.3990, 0.5256], [0.3431, 0.4689]], r3=[[0.4450, 0.5276], [0.3375, 0.4627]], r4=[[0.4378, 0.5473], 
[0.4079, 0.4827]], and r5=[[0.3666, 0.5216], [0.3670, 0.4309]]. 

Step 5: Each score was determined as s1=0.0530, s2=0.0489, s3=0.0742, s4=0.0459, and s5=0.0430. 
Since 𝑆3 > 𝑆1 > 𝑆2 > 𝑆4 > 𝑆5, we have 𝑘3 > 𝑘1 > 𝑘2 > 𝑘4 > 𝑘5. 
 

When utilizing the IVPyFPAAG operator, the main steps are as follows: 
Step 𝟣: Already done. 
Step 2: By utilizing the IVPyFPAAG operator, each distinct IVPyF decision matrix 𝑅𝑞 =

(𝑟𝑖𝜏
𝑞)

4𝑥5
(𝑞 = 𝟣, 2,3) was aggregated into the collective IVPyF decision matrix 𝑅 = (𝑟𝑖𝜏)5𝑥4, as shown 

in Table 5. 
Step 3: The values of 𝛵𝑖𝜏 were computed as: 

 𝛵𝑖𝜏 =

(

 
 

𝟣
𝟣
𝟣
𝟣
𝟣

0.0565
0.0414
0.0774
0.0481
0.0327

0.0009  
0.0026 
0.0024 
0.0003

  

0.0019  

0.000
0.0001
0.000
0.000
0.000 )

 
 
. 
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  Table 5 
  Collective interval-value Pythagorean fuzzy decision matrix 𝑅 by the IVPyFPAAG operator 
 𝒂𝟏 𝒂𝟐 
𝒌𝟏 [0.4349,0.4826] [0.3417,0.4384] [0.3499,0.4511] [0.3401,0.4206] 
𝒌𝟐 [0.3827,0.5395] [0.3541,0.4788] [0.4387,0.4825] [0.3186,0.4428] 
𝒌𝟑 [0.4476,0.5240] [0.3341,0.4567] [0.4205,0.5511] [0.3723,0.5299] 
𝒌𝟒 [0.4468,0.5405] [0.4141,0.4734] [0.3606,0.5900] [0.3905,0.5599] 
𝒌𝟓 [0.3706,0.4882] [0.3666,0.4194] [0.3555,0.5806] [0.3730,0.4583] 

 𝑎3 𝑎4 
𝒌𝟏 [0.3305,0.5400] [0.3595,0.4405] [0.3434,0.5282] [0.3497,0.4528] 
𝒌𝟐 [0.4497,0.5312] [0.4265,0.4609] [0.3315,0.4809] [0.3322,0.4402] 
𝒌𝟑 [0.3701,0.5497] [0.4291,0.4900] [0.3731,0.5119] [0.3638,0.4512] 
𝒌𝟒 [0.3529,0.5600] [0.3411,0.5199] [0.3949,0.5493] [0.3500,0.4713] 
𝒌𝟓 [0.4400,0.5890] [0.4483,0.5400] [0.3616,0.5600] [0.3769,0.4133] 

 
Step 4: The IVPyFPAAG operator was used to combine all of the desire values 𝑟𝑖𝜏(𝑖 = 𝟣, 2, … ,5) 

on the i-th line of 𝑅 to obtain the overall preference values as r1=[[0.4298, 0.4809], [0.3416, 0.4375]], 
r2=[[0.3849, 0.5371], [0.3530, 0.4774]], r3=[[0.4454, 0.5259], [0.3373, 0.4627]], r4=[[0.4424, 0.5427], 
[0.4130, 0.4779]], and r5=[[0.3702, 0.4911], [0.3670, 0.4210]]. 

Step 5: Each score was determined as s1=0.0530, s2=0.0489, s3=0.0742, s4=0.0459, and s5=0.0430. 
Since 𝑆3 > 𝑆𝟣 > 𝑆4 > 𝑆2 > 𝑆5, we have 𝑘3 > 𝑘𝟣 > 𝑘4 > 𝑘2 > 𝑘5. Therefore, 𝑘3 is the best 
alternative. 
 
6. Comparative Study 
 

This section compares the combined outcomes of using the IVPyFPAAG and IVPyFPAAA 
operators for IVPyFVs, along with a variety of other aggregation operators; i.e. the  
IFPAAA [30], PyFPAAA [31], and IVIFFWA operator [32]. To fully evaluate these operators, we 
applied them to the solution of the previously discussed problem. Table 6 below compiles the 
results. 
 
  Table 6 
  Results of the comparative analysis 
Operator Ranking 

𝐼𝑉𝐼𝐹𝑃𝐴𝐴𝐴 k3 > k𝟣 > k4 > k2 > k5 
𝐼𝑉𝐼𝐹𝑃𝐴𝐴𝐺 k3 > k𝟣 > k4 > k2 > k5 
𝐼𝐹𝑃𝐴𝐴𝐴 [30] k3 > k𝟣 > k4 > k2 > k5 
𝐼𝐹𝑃𝐴𝐴𝐺 [30] k2 > k𝟣 > k3 > k4 > k5 
𝑃𝑦𝐹𝑃𝐴𝐴𝐴 [31] k3 > k𝟣 > k4 > k2 > k5 
𝑃𝑦𝐹𝑃𝐴𝐴𝐺 [31] k2 > k𝟣 > k3 > k4 > k5 
𝐼𝑉𝐼𝐹𝐹𝑊𝐴 [32] k3 > k𝟣 > k4 > k2 > k5 
𝐼𝑉𝐼𝐹𝐹𝑊𝐴 [33] k3 > k𝟣 > k4 > k2 > k5 

 
Operators IVPyFPAAG and IVPyFPAAA consistently determine that 𝑘3 is the best option. In 

comparison, the aggregation operators presented by the IFPAAA [30], PyFPAAA[31], and IVIFFWA 
operator [32] also produce findings that are comparable and support 𝑘3 as the best option. However, 
our proposed operators are highly effective because they include attribute prioritization, which 
increases decision precision. The results from the IVPyFPAAG and IVPyFPAAA operators show a clear 
and stable order thus demonstrating their adaptability in handling complex decision scenarios. Figure 
1 provides a graphic representation of this comparative analysis, highlighting the alignment and 
differences in results between the various aggregation techniques that were employed. 
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Fig. 1. Results of the comparative study 

 

7. Conclusions 
 

The environmental pollution that comes from transportation activities poses serious challenges 
to the sustainable development of cities worldwide. Shared mobility presents a workable solution to 
lessen the adverse effects of urban transportation. For PyFVs, we investigated Aczel-Alsina AOs and 
put forth two new operators; i.e. IVPyFPAAG and IVPyFPAAA. By incorporating prioritization, these 
operators address the requirement that real-world decision-making scenarios take into account the 
varying degrees of importance among attributes and decision-makers. We analyzed the properties 
of the IVPyFPAAG and IVPyFPAAA operators and illustrated their applicability with a numerical 
example concerning the MAGDM approach. This approach emphasizes how crucial it is to rank the 
criteria and decision-makers in decision-making processes. When we compared our findings with 
those of other aggregation operators that included prioritization, we discovered consistent and 
similar results. In the future, the study will be expanded to complex Pythagorean fuzzy sets, complex 
q-rung orthopair fuzzy sets, and complex interval-valued Pythagorean fuzzy sets. 

 
Appendix-1: Proof of Theorem 1 

Theorem 1 can be demonstrated in the following way using the mathematical induction approach. 
For ∅ = 2, using Aczel-Alsina operations of IVPyFVs, we obtain: 

𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎𝟣 =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑙))

𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)
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𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

𝜎2 =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑙 ))

𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

,

)

 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2) =
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

𝜎𝟣⊕
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

𝜎2  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑙))

𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 

)

 
 
 
 
 
 

⊕

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑙 ))

𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
+ 

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑈))

𝕠
+ 

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝟣
2𝑙))

𝕠
+

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑙 ))

𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
+

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 

)

 
 
 
 
 
 

 

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 

)

 
 
 
 
 
 

  

Hence, Eq. (12) is true for ∅ = 2. 
 
Assume that Eq. (12) is true for ∅ = 𝑘. Then, we have:  

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎𝑘) =⊕𝜏=𝟣
𝑘 𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(𝜎𝜏)  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)
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Now for ∅ = 𝑘 + 𝟣, we get: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎𝑘+𝟣) =⊕𝜏=𝟣
𝑘

𝛵𝜏
∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(𝜎𝜏) ⊕
𝛵𝑘+𝟣
∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(𝜎𝑘+𝟣) 

=

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

⊕ 

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎k+𝟣
2𝑈 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎k+𝟣
2𝑈 ))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎k+𝟣
2𝑙 ))

𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎k+𝟣
2𝑈 ))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

.  

Eq. (12) is therefore valid for ∅ = 𝑘 + 𝟣 . 
 
We conclude that Eq. (12) holds for any value of ∅ because of the forms (I) and (II), proving that the 

IVPyFPAAA operator satisfies the requirements of boundedness, monotonicity, and idempotency. Any AO 
must have these characteristics in order to function correctly within expected bounds, behave predictably 
when input values change, and retain consistency when applied repeatedly to the same set of data. 

 
Appendix-2: Proof of Theorem 2 

Since 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) = 𝜎 = ([𝜓𝜎
𝑙 , 𝜓𝜎

𝑈], [ℳ𝜎
𝑙 ,ℳ𝜎

𝑙 ]). Then, we have by Eq. (12) the 

following: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

=

(

 

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎
2𝑙))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎
2𝑈))

𝕠
)
𝟣/𝕠

]
 
 
 

, [
√
𝑒𝑥𝑝

−((−𝘓𝘕(𝜓𝜎
2𝑙))

𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−((−𝘓𝘕(𝜓𝜎
2𝑈))

𝕠
)
𝟣/𝕠

]

)

   

= ([√𝟣 − 𝑒𝑥𝑝−𝘓𝘕(𝟣−𝜓𝜎
2𝑙), √𝟣 − 𝑒𝑥𝑝−𝘓𝘕(𝟣−𝜓𝜎

2𝑈)] , [√𝑒𝑥𝑝𝘓𝘕𝜓𝜎
2𝑙
, √𝑒𝑥𝑝𝘓𝘕𝜓𝜎

2𝑈
]) = ([√𝜓𝜎

2𝑙 , √𝜓𝜎
2𝑈], [√𝜓𝜎

2𝑙 , √𝜓𝜎
2𝑈]) = 𝜎.  

Thus, Eq. (13) holds. 
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Appendix-3: Proof of Theorem 3 
Let 𝜎𝜏 = ([𝜓𝜎𝜏

𝑙 , 𝜓𝜎𝜏
𝑈 ], [ℳ𝜎𝜏

𝑙 ,ℳ𝜎𝜏
𝑈 ]) be a collection of PyFVs. Let 𝜎− = 𝑚𝑖𝑛(𝜎𝟣, β2, … , 𝜎∅) = (𝜓𝜎

−, 𝜓𝜎
−) and 

𝜎+ = 𝑚𝑎𝑥(𝜎𝟣, β2, … , 𝜎∅) = (𝜓𝜎
+, 𝜓𝜎

+). Hence, there are the subsequent inequalities: 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎
−2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎
−2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

 

≤

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

 

≤

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎
+2𝑙))

𝕠

𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎
+2𝑈))

𝕠

𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

  

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎
+2𝑙))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎
+2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

  

≥

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

 

≥

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎
−2𝑙))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎
−2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

  

Therefore, 𝜎− ≤ 𝐼𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅ ≤ 𝜎+). 

 
Appendix-4: Proof of Theorem 5 

First, we compute 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼, 𝜎2⊕𝛼,… , 𝜎∅⊕𝛼) as: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

𝜎𝜏 ⊕𝛼 =

(

 
 
 
 
 

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑙))
𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑈))
𝕠
)

𝟣

𝕠

]
 
 
 

 ,

[√𝑒𝑥𝑝
−((−𝘓𝘕(ℳ𝜎𝜏

2𝑙 ))
𝕠
+(−𝘓𝘕(ℳ𝛼

2𝑙))
𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(ℳ𝛼

2𝑈))
𝕠
)
𝟣/𝕠

]

)
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𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼, 𝜎2⊕𝛼,… , 𝜎∅⊕𝛼) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
−𝘓𝘕

(

  
 
𝟣−

(

 
 
𝟣−𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑙))
𝕠
)

𝟣
𝕠

)

 
 

)

  
 

)

 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 

𝟣
𝕠

,

√
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
−𝘓𝘕

(

  
 
𝟣−

(

 
 
𝟣−𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑈))
𝕠
)

𝟣
𝕠

)

 
 

)

  
 

)

 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 

𝟣
𝕠

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√

𝑒𝑥𝑝

−

(

  
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

  
 
−𝘓𝘕

(

 
 
𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(ℳ𝛼

2𝑙))
𝕠
)

𝟣
𝕠

)

 
 

)

  
 

𝕠

∅
𝜏=𝟣

)

  
 

𝟣
𝕠

,

√

𝑒𝑥𝑝

−

(

 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
−𝘓𝘕(𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(ℳ𝛼

2𝑈))
𝕠
)

𝟣/𝕠

)

)

 
 

𝕠

∅
𝜏=𝟣

)

 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼, 𝜎2⊕𝛼,… , 𝜎∅⊕𝛼) =

(

 
 
 
 
 
 
 
 

[
 
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(𝟣−(𝜓𝛼

2𝑙)))
𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(𝟣−(𝜓𝛼

2𝑈)))
𝕠
)

𝟣

𝕠

]
 
 
 
 
 

 ,

[
 
 
 
 
√
𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(ℳ𝛼

2𝑙))
𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(ℳ𝛼

2𝑈))
𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼, 𝜎2⊕𝛼,… , 𝜎∅⊕𝛼)  =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏⊕𝛼
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏⊕𝛼
2𝑈 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏⊕𝛼
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏⊕𝛼
2𝑈 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

Now we make an expression for 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅)⊕ 𝛼 as: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)
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𝐼𝑉𝐼𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, …𝜎∅) ⊕ 𝛼 =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

⊕

([√𝜓𝛼
2𝑙 , √𝜓𝛼

2𝑈], [√ℳ𝛼
2𝑙 , √ℳ𝛼

2𝑈])  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) ⊕ 𝛼 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 
 

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 

𝟣−

(

 
 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

)

 
 
 
 
 

𝕠

+(−𝘓𝘕(𝟣−(𝜓𝛼
2𝑙)))

𝕠

)

 
 
 
 
 

𝟣

𝕠

 ,

√
  
  
  
  
  
  

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 
 

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 

𝟣−

(

 
 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

)

 
 
 
 
 

𝕠

+(−𝘓𝘕(𝟣−(𝜓𝛼
2𝑈)))

𝕠

)

 
 
 
 
 

𝟣

𝕠

]
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
 

𝑒𝑥𝑝

−

(

 
 
 
 

(

 
 
 
 

−𝘓𝘕

(

 
 
 
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

)

 
 
 

)

 
 
 
 

𝕠

+(−𝘓𝘕(ℳ𝛼
2𝑙))

𝕠

)

 
 
 
 

𝟣/𝕠

,

√
  
  
  
  
 

𝑒𝑥𝑝

−

(

 
 
 
 

(

 
 
 
 

−𝘓𝘕

(

 
 
 
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

)

 
 
 

)

 
 
 
 

𝕠

+(−𝘓𝘕(ℳ𝛼
2𝑈))

𝕠

)

 
 
 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(𝟣−(𝜓𝛼

2𝑙)))
𝕠
)

𝟣

𝕠

,

√
𝟣 − 𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(𝟣−(𝜓𝛼

2𝑈)))
𝕠
)

𝟣

𝕠

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
√
𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(ℳ𝛼

2𝑙))
𝕠
)

𝟣/𝕠

,

√
𝑒𝑥𝑝

−((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )+(−𝘓𝘕(ℳ𝛼

2𝑈))
𝕠
)

𝟣/𝕠

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

  

Hence, 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼, 𝜎2⊕𝛼,… , 𝜎∅⊕𝛼) = 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅)⊕ 𝛼. 

 
Appendix-5: Proof of Theorem 6 

We have the following based on Eq. (8): 

𝜍𝜎 =

(

 
 
 
 
   

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣

𝕠

]
 
 
 

,

 [
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝜓𝜎𝜏
2𝑙 ))

𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝜓𝜎𝜏
2𝑈))

𝕠
)
𝟣/𝕠

]

)
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According to Theorem 𝟣, we have: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜍𝜎𝟣, 𝜍𝜎2, … , 𝜍𝜎∅)  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

√
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
−𝘓𝘕

(

  
 
𝟣−

(

 
 
𝟣−𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣
𝕠

)

 
 

)

  
 

)

 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 

𝟣
𝕠

, √
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
−𝘓𝘕

(

  
 
𝟣−

(

 
 
𝟣−𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣
𝕠

)

 
 

)

  
 

)

 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 

𝟣
𝕠

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 

√

𝑒𝑥𝑝

−

(

 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
−𝘓𝘕(𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣/𝕠

)

)

 
 

𝕠

∅
𝜏=𝟣

)

 
 

𝟣/𝕠

,

√

𝑒𝑥𝑝

−

(

 
 
∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
−𝘓𝘕(𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣/𝕠

)

)

 
 

𝕠

∅
𝜏=𝟣

)

 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

((𝜍(−ln(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
))∅

𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

((𝜍(−ln(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
))∅

𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

((𝜍(−ln(𝜓𝜎𝜏
2𝑙 ))

𝕠
))∅

𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

((𝜍(−ln(𝜓𝜎𝜏
2𝑈))

𝕠
))∅

𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) = 𝜍

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 

𝜍

(

 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝟣−

(

 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 

)

 
 
 
 

)

 
 
 
 

𝕠

)

 
 
 
 

𝟣

𝕠

, √
  
  
  
  
  
  

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 

𝜍

(

 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝟣−

(

 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 

)

 
 
 
 

)

 
 
 
 

𝕠

)

 
 
 
 

𝟣

𝕠

]
 
 
 
 
 
 
 
 
 
 

,

 

[
 
 
 
 
 
 
 
 

√

𝑒𝑥𝑝

−

(

 
 
 
𝜍

(

 
 
 
−𝘓𝘕

(

  
 
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

)

  
 

)

 
 
 

𝕠

)

 
 
 

𝟣/𝕠

,

√

𝑒𝑥𝑝

−

(

 
 
 
𝜍

(

 
 
 
−𝘓𝘕

(

  
 
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

)

  
 

)

 
 
 

𝕠

)

 
 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
√

𝟣 − 𝑒𝑥𝑝

−(𝜍((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
j=𝟣 (−ln(𝟣−𝜓𝜎𝜏

2𝑙 ))
𝕠
)))

𝟣
𝕠

,

√

𝟣 − 𝑒𝑥𝑝

−(𝜍((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
j=𝟣 (−ln(𝟣−𝜓𝜎𝜏

2𝑈))
𝕠
)))

𝟣
𝕠

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 
√

𝑒𝑥𝑝

−(𝜍((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
𝜏=𝟣 (−ln(ℳ𝜎𝜏

2𝑙 ))
𝕠
)))

𝟣/𝕠

,

√

𝑒𝑥𝑝

−(𝜍((∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
𝜏=𝟣 (−ln(ℳ𝜎𝜏

2𝑈))
𝕠
)))

𝟣/𝕠

]
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

  

Hence, 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜍𝜎𝟣, 𝜍𝜎2, … , 𝜍𝜎∅) = 𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅). 

 
Appendix-6: Proof of Theorem 7 
 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜍𝜎𝟣⊕𝛼, 𝜍𝜎2⊕𝛼,… , 𝜍𝜎∅⊕𝛼) = 𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕ 𝛼  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

𝜍𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) = 𝜍

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) =

(

 
 
 
 
 
 
 
 

 

[
 
 
 
 
 

 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 ))

𝟣

𝕠

,
√
 𝟣 − 𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 ))

𝟣

𝕠

]
 
 
 
 
 

,

 

[
 
 
 
 
√
𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 ))

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 ))

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 
 

  

 

𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕ 𝛼 =

(

 
 
 
 
 
 
 
 

 

[
 
 
 
 
 

 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 ))

𝟣

𝕠

,
√
 𝟣 − 𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 ))

𝟣

𝕠

]
 
 
 
 
 

,

 

[
 
 
 
 
√
𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 ))

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 ))

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 
 

⊕ ([√𝜓𝛼
2𝑙 , √𝜓𝛼

2𝑈], [√ℳ𝛼
2𝑙 , √ℳ𝛼

2𝑈])  
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𝜍IV𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕ 𝛼 =

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
√

𝟣 − 𝑒𝑥𝑝

−((𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 ))+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑙))
𝕠
)

𝟣

𝕠

,

√

𝟣 − 𝑒𝑥𝑝

−((𝜍(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 ))+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑈))
𝕠
)

𝟣

𝕠

]
 
 
 
 
 
 

 ,

[
 
 
 
 
 
 
 

√

𝑒𝑥𝑝

−

(

 
 
((𝜍(∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )))+(−𝘓𝘕(𝜓𝛼

2𝑙))
𝕠

)

 
 

𝟣/𝕠

,

√

𝑒𝑥𝑝

−

(

 
 
((𝜍(∑

𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )))+(−𝘓𝘕(𝜓𝛼

2𝑈))
𝕠

)

 
 

𝟣/𝕠

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜍𝜎𝟣⊕𝛼, 𝜍𝜎2⊕𝛼,… , 𝜍𝜎∅⊕𝛼)  

𝜍𝜎𝜏 =

(

 
 
 
 
   

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣

𝕠

]
 
 
 

,

 [
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
)
𝟣/𝕠

]

)

 
 
 
 
 

  

 

𝜍𝜎𝜏 ⊕𝛼 =

(

 
 
 
 
   

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣

𝕠

]
 
 
 

,

 [
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
)
𝟣/𝕠

]

)

 
 
 
 
 

⊕ ([𝜓𝛼
𝑙 , 𝜓𝛼

𝑈], [𝜓𝛼
𝑙 , 𝜓𝛼

𝑈])  

 

𝜍𝜎𝜏 ⊕𝛼 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 

(

 
 
 
−𝘓𝘕

(

  
 
𝟣−

(

 
 
𝟣−𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣
𝕠

)

 
 

)

  
 

)

 
 
 

𝕠

+(−𝘓𝘕(𝟣−𝜓𝛼
2𝑙))

𝕠

)

 
 
 

𝟣

𝕠

,

√
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 

(

 
 
 
−𝘓𝘕

(

  
 
𝟣−

(

 
 
𝟣−𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣
𝕠

)

 
 

)

  
 

)

 
 
 

𝕠

+(−𝘓𝘕(𝟣−𝜓𝛼
2𝑈))

𝕠

)

 
 
 

𝟣

𝕠

]
 
 
 
 
 
 
 
 
 

 ,

[
 
 
 
 
 
 
 
 
 

√

𝑒𝑥𝑝

−

(

  
 

(

  
 
−𝘓𝘕

(

 
 
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
)

𝟣
𝕠

)

 
 

)

  
 

𝕠

+(−𝘓𝘕(𝜓𝛼
2𝑙))

𝕠

)

  
 

𝟣

𝕠

,

√

𝑒𝑥𝑝

−

(

 
 

(

 
 
−𝘓𝘕(𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
)

𝟣/𝕠

)

)

 
 

𝕠

+(−𝘓𝘕(𝜓𝛼
2𝑈))

𝕠

)

 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 
 
 
 
 
 
 

∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
 
 
 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 
 
 
 
 
 

𝟣−

(

 
 
 
 
 
 
 
 
 

𝟣−𝑒𝑥𝑝

−

(

 
 
 
 

(

 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝟣−

(

 
 
 
𝟣−𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
)

𝟣
𝕠

)

 
 
 

)

 
 
 
 

)

 
 
 
 

𝕠

+(−𝘓𝘕(𝟣−𝜓𝛼
2𝑙))

𝕠

)

 
 
 
 

𝟣
𝕠

)

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 
 
 
 
 
 
 
 

𝟣
𝕠

,

√
  
  
  
  
  
  
  
  
  
  
 

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 
 
 
 
 
 
 

∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
 
 
 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 
 
 
 
 
 

𝟣−

(

 
 
 
 
 
 
 
 
 

𝟣−𝑒𝑥𝑝

−

(

 
 
 
 

(

 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝟣−

(

 
 
 
𝟣−𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣
𝕠

)

 
 
 

)

 
 
 
 

)

 
 
 
 

𝕠

+(−𝘓𝘕(𝟣−𝜓𝛼
2𝑈))

𝕠

)

 
 
 
 

𝟣
𝕠

)

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 
 
 
 
 
 
 
 

𝟣
𝕠

,]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
 

𝑒𝑥𝑝

−

(

 
 
 
 
 
 
 
 

∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 
 
 

𝑒𝑥𝑝

−

(

 
 
 
 

(

 
 
 
 

−𝘓𝘕

(

 
 
 
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
)

𝟣
𝕠

)

 
 
 

)

 
 
 
 

𝕠

+(−𝘓𝘕(𝜓𝛼
2𝑙))

𝕠

)

 
 
 
 

   
𝟣
𝕠

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 
 
 
 
 
 

𝟣
𝕠

,

√
  
  
  
  
  
  
  

𝑒𝑥𝑝

−

(

 
 
 
 
 
 

∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(

 
 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 
 

𝑒𝑥𝑝

−

(

 
 
 

(

  
 
−𝘓𝘕

(

 
 
𝑒𝑥𝑝

−(𝜍(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
)

𝟣/𝕠

)

 
 

)

  
 

𝕠

+(−𝘓𝘕(𝜓𝛼
2𝑈))

𝕠

)

 
 
 

   𝟣/𝕠

)

 
 
 
 
 
 

)

 
 
 
 
 
 

𝕠

∅
𝜏=𝟣

)

 
 
 
 
 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
𝜏=𝟣 (𝜍((−𝘓𝘕(𝟣−𝜓𝜎𝜏

2𝑙 ))
𝕠
))+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑙))
𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
𝜏=𝟣 (𝜍((−𝘓𝘕(𝟣−𝜓𝜎𝜏

2𝑈))
𝕠
))+(−𝘓𝘕(𝟣−𝜓𝛼

2𝑈))
𝕠
)

𝟣

𝕠

]
 
 
 
 

 ,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
𝜏=𝟣 ((𝜍((−𝘓𝘕(ℳ𝜎𝜏

2𝑙 ))
𝕠
)))+(−𝘓𝘕(𝜓𝛼

2𝑙))
𝕠
)

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

∅
𝜏=𝟣 ((𝜍((−𝘓𝘕(ℳ𝜎𝜏

2𝑈))
𝕠
)))+(−𝘓𝘕(𝜓𝛼

2𝑈))
𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 
Appendix-7: Proof of Theorem 8 

According to Theorem 𝟣, we have: 

𝜎𝜏 ⊕𝛼𝜏 =

(

 
 
 
 
 

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼𝜏

2𝑙 ))
𝕠
)

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼𝜏

2𝑈))
𝕠
)

𝟣

𝕠

]
 
 
 

 ,

[√𝑒𝑥𝑝
−((−𝘓𝘕(ℳ𝜎𝜏

2𝑙 ))
𝕠
+(−𝘓𝘕(ℳ𝛼𝜏

2𝑙 ))
𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(ℳ𝛼𝜏

2𝑈))
𝕠
)
𝟣/𝕠

]

)
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𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅)  =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣⊕𝛼𝟣, 𝜎2⊕𝛼2, … , 𝜎∅⊕𝛼∅) =

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼𝜏

2𝑙 ))
𝕠
))∅

𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼𝜏

2𝑈))
𝕠
))∅

𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(((−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(ℳ𝛼𝜏

2𝑙 ))
𝕠
))∅

𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(((−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(ℳ𝛼𝜏

2𝑈))
𝕠
))∅

𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝜎𝟣, 𝜎2, … , 𝜎∅) ⊕  𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐴(𝛼𝟣, 𝛼2, … , 𝛼∅) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝛼𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝛼𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝛼𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝛼𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 
 

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 

𝟣−

(

 
 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

)

 
 
 
 
 

𝕠

+

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 

𝟣−

(

 
 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝛼𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

)

 
 
 
 
 

𝕠

)

 
 
 
 
 

𝟣

𝕠

 ,

√
  
  
  
  
  
  

𝟣 − 𝑒𝑥𝑝

−

(

 
 
 
 
 

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 

𝟣−

(

 
 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

)

 
 
 
 
 

𝕠

+

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 
 

𝟣−

(

 
 
 
 

𝟣−𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝛼𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

)

 
 
 
 
 

𝕠

)

 
 
 
 
 

𝟣

𝕠

 ]
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
 

𝑒𝑥𝑝

−

(

 
 
 
 
 

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

𝕠

+

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝛼𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

𝕠

)

 
 
 
 
 

𝟣

𝕠

,

√
  
  
  
  
  
 

𝑒𝑥𝑝

−

(

 
 
 
 
 

(

 
 
 
 
 

−𝘓𝘕

(

 
 
 
 

𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

)

 
 
 
 

)

 
 
 
 
 

𝕠

+

(

 
 
 
 

−𝘓𝘕

(

 
 
 
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝛼𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

)

 
 
 

)

 
 
 
 

𝕠

)

 
 
 
 
 

𝟣/𝕠

]
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼𝜏

2𝑙 ))
𝕠
)∅

𝜏=𝟣 )

𝟣

𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

((−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(𝟣−𝜓𝛼𝜏

2𝑈))
𝕠
)∅

𝜏=𝟣 )

𝟣

𝕠

]
 
 
 
 

 ,

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(((−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
+(−𝘓𝘕(ℳ𝛼𝜏

2𝑙 ))
𝕠
))∅

𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(((−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
+(−𝘓𝘕(ℳ𝛼𝜏

2𝑈))
𝕠
))∅

𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

 
Appendix-8: Proof of Theorem 9 

Theorem 9 can be demonstrated by using the mathematical induction approach. 
For ∅ = 2, using Aczel-Alsina operations of IVPyFVs, we obtain: 

𝜎𝟣

𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣 =

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑙))

𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

𝜎2

𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣 =

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2) = 𝜎𝟣

𝛵𝟣

∑ 𝛵𝜏
∅
𝜏=𝟣 ⊗𝜎2

𝛵2

∑ 𝛵𝜏
∅
𝜏=𝟣   
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=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑙))

𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

⊗

(

 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵2

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑙))

𝕠
+

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝟣
2𝑈))

𝕠
+

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎2
2𝑈))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝟣
2𝑙 ))

𝕠
+ 

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎2
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝟣

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
+ 

𝛵2
∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
2
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 

  

Hence, Eq. (19) is true for ∅ = 2. 
 
If Eq. (19) holds true for ∅ = 𝑘, then we have:  

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … 𝜎𝑘) =⊗𝜏=𝟣
𝑘 𝜎𝜏

𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣 =

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

Now for ∅ = 𝑘 + 𝟣, we get: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … 𝜎𝑘+𝟣) =⊗𝜏=𝟣
𝑘 𝜎𝜏

𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣 ⊗𝜎k+𝟣

𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣   
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(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
𝑘
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

⊗

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎k+𝟣
2𝑙 ))

𝕠
)

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎k+𝟣
2𝑈 ))

𝕠
)

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎k+𝟣
))
𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(
𝛵𝑘+𝟣

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎k+𝟣
))
𝕠
)

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
𝑘+𝟣
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
𝑘+𝟣
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

Eq. (19) is therefore valid for ∅ = 𝑘 + 𝟣. Due to forms (I) and (II), we conclude that Eq. (19) holds for any 
value of ∅. 

 
Appendix-9: Proof of Theorem 10 

Since 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) = 𝜎 = ([𝜓𝜎
𝑙 , 𝜓𝜎

𝑈], [,ℳ𝛼𝜏
𝑙 ,ℳ𝛼𝜏

𝑈 ]), then we have: 

𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … 𝜎∅) =

(

 
 
 
 
 
 
 

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

,

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

)

 
 
 
 
 
 
 

  

=

(

 [√𝑒𝑥𝑝
−((−𝘓𝘕(ℳ𝜎

2𝑙))
𝕠
)
𝟣/𝕠

,
√
𝑒𝑥𝑝

−((−𝘓𝘕(ℳ𝜎
2𝑈))

𝕠
)
𝟣/𝕠

] ,

[
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎
2𝑙))

𝕠
)

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−((−𝘓𝘕(𝟣−𝜓𝜎
2𝑈))

𝕠
)
𝟣/𝕠

]
 
 
 

)

   

= ([√𝟣 − 𝑒𝑥𝑝−𝘓𝘕(𝟣−𝜓𝜎
2𝑙), √𝟣 − 𝑒𝑥𝑝−𝘓𝘕(𝟣−𝜓𝜎

2𝑈)] , [𝑒𝑥𝑝𝘓𝘕ℳ𝜎
2𝑙
, 𝑒𝑥𝑝𝘓𝘕ℳ𝜎

2𝑈
]) = ([√𝜓𝜎

2𝑙 , √𝜓𝜎
2𝑈], [√ℳ𝜎

2𝑙 , √ℳ𝜎
2𝑈]) = 𝜎.  

Thus, 𝐼𝑉𝑃𝑦𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎𝜚) = 𝜎 holds. 

 
Appendix-10: Proof of Theorem 11 

Let 𝜎𝜏 = ([𝜓𝜎𝜏
𝑙 , 𝜓𝜎𝜏

𝑈 ], [ℳ𝜎𝜏
𝑙 ,ℳ𝜎𝜏

𝑈 ]) be a collection of IVPyFVs. Let 𝜎− = 𝑚𝑖𝑛(𝜎𝟣, β2, … , 𝜎∅) =

([𝜓𝜎
−𝑙 , 𝜓𝜎

−𝑙], [ℳ𝜎
−𝑈,ℳ𝜎

−𝑈]) and 𝜎+ = 𝑚𝑎𝑥(𝜎𝟣, β2, … , 𝜎∅) = ([𝜓𝜎
+𝑙, 𝜓𝜎

+𝑙] , [ℳ𝜎
+𝑙,ℳ𝜎

+𝑈]). Hence, the 

subsequent inequalities are: 
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[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎
−2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎
−2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

  

≥

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−𝜓𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣
𝕠

]
 
 
 
 

  

≥

[
 
 
 
 
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎
+2𝑙))

𝕠

𝜏=𝟣 )

𝟣
𝕠

,
√
𝟣 − 𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝟣−ℳ𝜎
+2𝑈))

𝕠

𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

  

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎
+2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎
+2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

  

≤

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑙 ))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(ℳ𝜎𝜏
2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

 

≤

[
 
 
 
 
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎
−2𝑙))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

,
√
𝑒𝑥𝑝

−(∑
𝛵𝜏

∑ 𝛵𝜏
∅
𝜏=𝟣

(−𝘓𝘕(𝜓𝜎
−2𝑈))

𝕠
∅
𝜏=𝟣 )

𝟣/𝕠

]
 
 
 
 

 

Therefore, 𝜎− ≤ 𝐼𝑉𝐼𝐹𝑃𝐴𝐴𝐺(𝜎𝟣, 𝜎2, … , 𝜎∅ ≤ 𝜎+). 
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