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This paper explores an innovative approach to solving multi-criteria decision-

making (MCDM) problems by focusing on the aggregation of membership and 

non-membership values using score functions of Fermatean fuzzy sets. 

Fermatean fuzzy sets have been used to provide a more complex and flexible 

framework for decision-making because of their ability to handle higher levels 

of uncertainty and ambiguity. The suggested approach makes use of the 

unique characteristics of Fermatean fuzzy sets to enhance the aggregation 

procedure and guarantee a more accurate representation of uncertainty in 

scenarios involving decision-making. The study begins with a comprehensive 

review of existing fuzzy set theories and their applications in MCDM, 

highlighting the limitations of traditional methods. The novel part of this work 

is to provide a score function designed for Fermatean fuzzy sets that improves 

the accuracy and consistency of the aggregation procedure. Such score 

function offers a reliable method for combining several criteria since they are 

carefully put together to represent the varied relationships between 

membership and non-membership values. To validate the effectiveness of the 

proposed approach, the methodology is applied to a hypothetical case study 

in software design. The results underscore the potential of Fermatean fuzzy 

sets in addressing the complexities of MCDM, particularly in fields requiring 

high levels of precision and adaptability. This research presents a novel and 

effective alternative to traditional MCDM approaches, offering significant 

improvements in the handling of uncertainty and ambiguity. Experimental 

results of the study are presented and compared with the existing literature. 
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1. Introduction 

 

In the contemporary decision-making landscape, multi-criteria decision-making (MCDM) plays a 

pivotal role in addressing complex problems characterized by multiple conflicting criteria. MCDM has 

been extensively explored and utilized across various domains, including engineering, economics, 

and management, due to its capability to provide systematic and rational solutions [1]. However, the 
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inherent uncertainty and imprecision in decision-making processes necessitate the use of advanced 

mathematical tools, such as fuzzy sets, to handle such ambiguities effectively. The concept of fuzzy 

sets, introduced by Zadeh [2], provided a framework for dealing with uncertainties by allowing partial 

membership of elements in sets. This foundational idea has been expanded into various forms, 

including intuitionistic fuzzy sets (IFS) and Pythagorean fuzzy sets (PFS), to better capture the degrees 

of membership and non-membership simultaneously. Atanassov's intuitionistic fuzzy sets [3-4] 

extend the classical fuzzy set theory by incorporating an additional degree of hesitation, thus offering 

a more comprehensive approach to modeling uncertainty. The advent of PFSs, proposed by Yager [5-

6], introduced a novel dimension to fuzzy set theory by allowing the sum of the squares of the 

membership and non-membership degrees to be less than or equal to one. This extension enhances 

the flexibility and applicability of fuzzy sets in capturing uncertainty. PFS has been utilized in various 

MCDM methods to improve decision-making accuracy and robustness [7-8].  

The concept of Fermatean fuzzy sets has been developed as an extension of the existing fuzzy set 

theories to address more complex and uncertain information in decision-making processes. Initiated 

by Senapati and Yager [9-11], these sets were conceptualized to provide a more flexible framework 

than traditional fuzzy and intuitionistic fuzzy sets. Fermatean fuzzy sets have been characterized by 

a membership degree, a non-membership degree, and a hesitancy degree, offering a richer structure 

for modeling uncertainty. The formulation of these sets has been based on the generalization of PFSs, 

which themselves extended IFSs. The enhancement provided by Fermatean fuzzy sets lies in their 

ability to handle more intricate uncertainties without compromising computational efficiency or the 

robustness of the decision-making process [11]. Several operations over Fermatean fuzzy numbers 

have been explored to enrich their applicability. Senapati and Yager [9] introduced new operations 

on Fermatean fuzzy numbers, expanding the algebraic structures that can be utilized in various 

computational scenarios. These operations were designed to enhance the manipulation of 

Fermatean fuzzy data, thus improving the accuracy and reliability of outcomes in MCDM processes. 

The operations have included, but are not limited to, addition, multiplication, and scalar 

multiplication, each tailored to preserve the inherent properties of Fermatean fuzzy numbers while 

ensuring their practical applicability in decision-making models [10].  

The domain of MCDM has been extensively explored through various techniques aimed at 

optimizing decision processes in complex environments. These techniques have been developed to 

address the intricate nature of decision-making where multiple criteria must be considered and 

balanced. The literature presents a diverse array of approaches that have been utilized across 

different fields, each contributing to the evolution of MCDM methodologies. Hybrid fuzzy MCDM 

approaches have been a significant area of research, particularly in project selection problems. Salehi 

[12] introduced a hybrid fuzzy MCDM approach, combining the strengths of different methodologies 

to enhance decision accuracy. This approach integrated fuzzy logic to handle uncertainty and 

imprecision, making it suitable for real-world project selection scenarios where precise information 

is often unavailable. This methodology underscored the importance of hybrid approaches in 

addressing the multifaceted nature of decision-making problems. The introduction of fuzzy 

parameters in project selection has further enriched MCDM techniques. Huang [13] explored optimal 

project selection with random fuzzy parameters, highlighting the importance of incorporating both 

randomness and fuzziness in decision models. This approach has been crucial in environments where 

project parameters are uncertain and variable, offering a more realistic and adaptable decision-

making process.  

In the field of research and development (R&D), fuzzy approaches have been pivotal. Carlsson et 

al. [14] proposed a fuzzy approach to R&D project portfolio selection, emphasizing the need to handle 

the inherent uncertainty in R&D environments. This methodology has facilitated the evaluation and 
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selection of R&D projects by incorporating fuzzy logic to represent imprecise information, thus 

improving the decision quality. The fuzzy analytic network process (ANP) has been another significant 

advancement in MCDM. Mohanty et al. [15] introduced a fuzzy ANP-based approach for R&D project 

selection, showcasing its capability to handle complex interdependencies among criteria. This 

approach has provided a structured framework for evaluating R&D projects, considering both 

qualitative and quantitative factors in the decision-making process.  

A constrained fuzzy analytic hierarchy process (AHP) has been employed to refine project 

selection methodologies. Enea and Piazza [16] proposed a constrained fuzzy AHP model that 

enhanced project evaluation by incorporating constraints into the decision framework. This model 

has been crucial in ensuring that selected projects not only meet multiple criteria but also adhere to 

specific constraints, thus aligning with organizational policies and limitations. The integration of fuzzy 

AHP and TOPSIS techniques has further advanced project selection methodologies. Mahmoodzadeh 

et al. [17] utilized a combination of fuzzy AHP and TOPSIS to improve project evaluation processes. 

This hybrid approach has benefited from the strengths of both techniques, offering a robust and 

comprehensive framework for project selection that accommodates both fuzziness and ranking 

capabilities. Applications of AHP and fuzzy TOPSIS methods in specific industries were explored by 

Amiri [18], who applied these techniques to the oil-field development project selection. This study 

highlighted the practical applicability of MCDM techniques in industry-specific contexts, 

demonstrating their effectiveness in addressing complex decision-making problems in the oil and gas 

sector. The use of the fuzzy ELECTRE method in project selection has also been investigated. 

Daneshvar Rouyendegh and Erol [19] introduced this method to enhance project selection processes 

by considering multiple criteria and their respective weights. The fuzzy ELECTRE method has provided 

a robust decision-making tool that ranks projects based on their overall performance across various 

criteria.  

Comparative analyses of different MCDM methods have been conducted to evaluate their 

effectiveness. Chu et al. [20]  compared three analytical methods for knowledge communities’ group 

decision analysis, highlighting the strengths and weaknesses of each method. Such comparative 

studies have been valuable in identifying the most suitable MCDM techniques for specific decision-

making contexts. Compromise solutions in MCDM have been explored through methods like VIKOR 

and TOPSIS. Opricovic and Tzeng [21] conducted a comparative analysis of these methods, 

emphasizing their applicability in achieving compromise solutions. These methods have been 

instrumental in situations where decision-makers seek a balanced solution that satisfies multiple 

criteria to an acceptable degree. Portfolio optimization using hybrid MCDM methods has been 

another significant area of research. Raei and Jahromi [22] explored a hybrid approach combining 

fuzzy ANP, VIKOR, and TOPSIS for portfolio optimization. This approach has leveraged the strengths 

of multiple MCDM techniques to optimize project portfolios, ensuring that the selected projects align 

with strategic objectives and provide the best possible outcomes.  

The development of Fermatean fuzzy sets has further enriched MCDM methodologies. Senapati 

and Yager [10] introduced Fermatean fuzzy weighted averaging and geometric operators, 

demonstrating their application in MCDM methods. These operators have enhanced the ability to 

aggregate criteria and make more informed decisions, particularly in scenarios involving higher 

degrees of uncertainty and complexity. Sahoo et al. [23] examined score function-based effective 

ranking of interval-valued Fermatean fuzzy sets, showcasing their applicability in multi-criteria 

decision-making problems.  

The evolution of aggregation operators has been significantly influenced by the development of 

fuzzy set theory and its extensions, such as IFSs and PFSs. Several types of aggregation operators have 

been developed to handle fuzzy, intuitionistic fuzzy, Pythagorean fuzzy, and Fermatean fuzzy data. 
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These include the ordered weighted averaging (OWA) operator [24], the Choquet integral [25], and 

the Dombi aggregation operator [26]. Each of these operators has unique properties and is suited for 

different decision-making scenarios. For instance, the OWA operator, which provides a 

parameterized family of aggregation operators, allows decision-makers to model different types of 

aggregation behavior by adjusting the weights assigned to the inputs [24]. The Choquet integral, on 

the other hand, is particularly useful in scenarios where interactions among criteria need to be 

considered, as it allows for the aggregation of inputs for a fuzzy measure [25].  

Recent research has focused on enhancing the capabilities of these traditional aggregation 

operators and developing new ones to address the growing complexity of decision-making problems. 

For example, Garg [27] introduced generalized Pythagorean fuzzy information aggregation operators 

using Einstein operations, which were effective in MCDM scenarios. Similarly, Liu [28] proposed 

Hamacher aggregation operators based on interval-valued intuitionistic fuzzy numbers, which 

provide a flexible approach to handling uncertainty in group decision-making processes. 

Furthermore, the concept of deviation-based aggregation functions, as explored by Decky et al. [29], 

offered an innovative approach to aggregation by considering the deviations of inputs from a central 

value. This approach was particularly useful in scenarios where maintaining a balance among criteria 

is crucial. Additionally, the introduction of super migrative aggregation functions by Durante and Ricci 

[30] opened new avenues for research in the field of aggregation operators, offering a framework 

that ensures the super additivity property, which is desirable in many decision-making contexts.  

The application of these advanced aggregation operators has been demonstrated in various 

practical decision-making scenarios. For instance, Dong et al. [31] discussed the use of consensus-

reaching processes in social network group decision-making, highlighting the challenges and research 

paradigms associated with this approach. The development of Fermatean fuzzy weighted averaging 

(FFWA) and Fermatean fuzzy weighted geometric (FFWG) operators marked a significant milestone 

in the application of these sets. These operators, as introduced by Senapati and Yager [9-11], have 

been pivotal in refining MCDM methods. By using the unique attributes of Fermatean fuzzy sets, 

these operators have facilitated more accurate aggregation of criteria, leading to more robust and 

reliable decision outcomes. The FFWA and FFWG operators have been applied in various engineering 

and artificial intelligence contexts, showcasing their versatility and effectiveness in dealing with 

complex decision-making scenarios [9-11].  

This research aims to develop a novel MCDM approach that integrates Fermatean fuzzy sets with 

alternative aggregation techniques to enhance decision-making under uncertainty. In this paper, we 

present a novel aggregation approach called the membership and non-membership aggregation 

method. This method involves calculating the weighted average of the cubic power of membership 

and non-membership functions. Subsequently, we determine the score function value for each 

alternative using appropriate score functions. To compute the weights, we employ the entropy 

method as well as the score functions.  

 

1.1 Background and Motivation 

 

Software design problems typically involve a multitude of criteria, each reflecting different 

aspects of the system's functionality and performance. Commonly considered criteria in software 

design include usability, performance, security, scalability, and maintainability. Each of these criteria 

plays a pivotal role in determining the overall quality and success of the software product. For 

instance, usability ensures that the end-users can efficiently and effectively interact with the system, 

while performance relates to the system's responsiveness and processing capabilities. Security 

addresses the system's ability to protect against unauthorized access and cyber threats, scalability 
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pertains to the system's capability to handle increased loads, and maintainability reflects the ease 

with which the system can be modified and upgraded. The challenge in MCDM for software design 

lies in the subjective and often ambiguous nature of these criteria. Designers and stakeholders may 

have different perceptions and preferences, leading to varied evaluations of the same design 

alternative. Fuzzy set theory, provides a mathematical framework to model such uncertainties by 

allowing both membership and non-membership degrees, thereby offering a richer and more flexible 

representation of uncertainty. This study contributes to the field by offering a comprehensive 

approach to MCDM that integrates the strengths of Fermatean fuzzy sets and aggregation 

techniques, providing a robust solution to decision-making problems under uncertainty. 

 

1.2 Research Objectives and Contributions 

 

This research aims to address the MCDM problem in software design by employing the Sahoo 

score function [32] to evaluate and rank four alternative designs based on five critical criteria; i.e. 

usability, performance, security, scalability, and maintainability. The primary contributions of this 

study are as follows: 

 

i. Development of a novel aggregation framework − We propose a new aggregation 

framework that integrates the Sahoo score function [32] with simple Fermatean fuzzy 

aggregation approaches. This framework is designed to capture the complex interactions 

between membership and non-membership degrees, thereby providing a more accurate 

and reliable assessment of software design alternatives. 

ii. Application to software design − We demonstrate the practical applicability of the 

proposed framework by solving a real-world MCDM problem in software design.  

iii. Validation and comparative analysis − We validate the effectiveness of the proposed 

framework through a comparative analysis with existing methods.  

 

The remainder of this paper is organized as follows: Section 2 introduces fundamental 

mathematical terms. Section 3 outlines the calculation of criteria weights using the entropy method. 

Section 4 illustrates the method for utilizing membership and non-membership functions aggregation 

in MCDM. Section 5 discusses various technical terms related to software design. Section 6 contains 

the numerical study, results, and discussions. Finally, Section 7 presents the conclusion. 

 

2. Preliminaries 

 

In this section, we define several fundamental mathematical terms that are used throughout the 

entire manuscript. 

Definition 2.1 [9-10]. Let U  be a universe of discourse. A Fermatean fuzzy set (FFS) F  in U  is 

given by µ γ= < > ∈{ , ( ), ( ) : },
F F

F u u u u U  where µ →: [0,1]
F

U  denotes the degree of membership 

and γ →: [0,1]
F

U  denotes the degree of non-membership of the element ∈u U  to the set ,F

respectively. The degree of hesitation that the element ∈u U  belongs to the FFS F  is denoted by 

π ( )
F

u  and is defined by π µ γ= − −3 33( ) 1 ( ) ( ).
F F F

u u u  Now, according to Senapati and Yager [9-10], 

we may denote µ γ= ( , )
F F

F  as Fermatean fuzzy number (FFN). Let µ γ= ( , )
F F

F  be the FFN, then 

hesitation is π µ γ= − −3 33 1 .
F F F
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Definition 2.2 [9-10]. Let µ γ= ( , ),
F F

F  µ γ=
1 11

( , ),
F F

F  and µ γ=
2 22

( , )
F F

F  are three PFNs and a 

scalar λ > 0,  then: 

 

1. 
1 2 1 2 1 21 2 1 2 1 21 2 1 2 1 21 2 1 2 1 2

3 3 3 33 3 3 33 3 3 33 3 3 33333
1 21 21 21 2

( , ),( , ),( , ),( , ),
F F F F F FF F F F F FF F F F F FF F F F F F

F FF FF FF F µ µ µ µ γ γµ µ µ µ γ γµ µ µ µ γ γµ µ µ µ γ γ+ = + −+ = + −+ = + −+ = + −  

2. 
1 2 1 2 1 21 2 1 2 1 21 2 1 2 1 21 2 1 2 1 2

3 3 3 33 3 3 33 3 3 33 3 3 33333
1 21 21 21 2

( , ),( , ),( , ),( , ),
F F F F F FF F F F F FF F F F F FF F F F F F

F FF FF FF F µ µ γ γ γ γµ µ γ γ γ γµ µ γ γ γ γµ µ γ γ γ γ= + −= + −= + −= + −  

3. 33333333( 1 (1 ) , ),( 1 (1 ) , ),( 1 (1 ) , ),( 1 (1 ) , ),
F PF PF PF P

FFFF λ λλ λλ λλ λλ µ γλ µ γλ µ γλ µ γ= − −= − −= − −= − −  

4. 33333333( , 1 (1 ) ),( , 1 (1 ) ),( , 1 (1 ) ),( , 1 (1 ) ),
F FF FF FF F

FFFF λ λ λλ λ λλ λ λλ λ λµ γµ γµ γµ γ= − −= − −= − −= − −  

5. 
1 2 1 21 2 1 21 2 1 21 2 1 21 21 21 21 2

(max{ , }, min{ , }),(max{ , }, min{ , }),(max{ , }, min{ , }),(max{ , }, min{ , }),
F F F FF F F FF F F FF F F F

F FF FF FF F µ µ γ γµ µ γ γµ µ γ γµ µ γ γ∪ =∪ =∪ =∪ =  

6. 
1 2 1 21 2 1 21 2 1 21 2 1 21 21 21 21 2

(min{ , }, max{ , }),(min{ , }, max{ , }),(min{ , }, max{ , }),(min{ , }, max{ , }),
F F F FF F F FF F F FF F F F

F FF FF FF F µ µ γ γµ µ γ γµ µ γ γµ µ γ γ∩ =∩ =∩ =∩ =  

7. ( , ).( , ).( , ).( , ).CCCC
F FF FF FF F

FFFF γ µγ µγ µγ µ====  

 

Definition 2.3 [9-10]. Let µ γ= ( , )
F F

F  be the FFN, then the accuracy degree can be defined as 

µ γ= +3 3( ) .
F F

H F  Here, it is to be mentioned that ∈( ) [0,1].H F  

Definition 2.4 [9-10]. Let µ γ= ( , )
F F

F  be the FFN, then the score function can be defined as 

µ γ= −3 3( ) .
F F

S F  It is to be mentioned that ∈ −( ) [ 1,1].S F  It is to be noted that ∈( ) [0,1],H P  

whereas ∈ −( ) [ 1,1].S F  Here, it is to be mentioned that a function (.)F  is positive if ∈(.) [0,1]F  and 

negative if ∈ −(.) [ 1,0).F  In the purpose of ranking, most of the researchers have considered score 

function lies in the interval -1 and 1. Also, some of the researchers have proposed score function lies 

in the interval 0 and 1. For more details, one may refer to the work of Sahoo [33].  

Definition 2.5 [33]. Let µ γ= ( , )
F F

F  be the FFN, then ( )S F  can be defined as follows: 

 

3 33 33 33 31111
( ) (1 ).( ) (1 ).( ) (1 ).( ) (1 ).

2222 F FF FF FF F
S FS FS FS F µ γµ γµ γµ γ= + −= + −= + −= + −                                                                                                       (1) 

 

Theorem 2.1. The score function µ γ= + −3 31
( ) (1 )

2 F F
S F  is positive; i.e. ∈( ) [0,1].S F   

Proof of Theorem 2.1: For any FFN µ γ= ( , ),
F F

F  µ≤ 30 ,
F

 and γ≤ ≤30 1.
F

 Consequently 

γ γ≤  ≤ −3 31 0 1
F F

 and obviously µ γ+ − ≥3 31 0.
F F

 Also, µ γ+ ≤ 
3 3 1
F F

µ γ+ + ≤3 31 2
F F

µ γ + − ≤3 31 2.
F F

 So, we may write 
µ γ+ −

≤ ≤
3 31

0 1.
2
F F  Therefore, µ γ≤ + − ≤3 31

0 (1 ) 1
2 F F

 ∈( ) [0,1].S F  

Definition 2.6. Let µ γ=
1 11

( , )
F F

F  and µ γ=
2 22

( , )
F F

F  be two FFNs. Then ranking or order relation 

between 
1

F  and 
2

F  are as follows: 

 

1. 
1 21 21 21 2

F FF FF FF F≻≻≻≻  if and only if either 
1 21 21 21 2

( ) ( )( ) ( )( ) ( )( ) ( )S F S FS F S FS F S FS F S F>>>>  or 
1 21 21 21 2

( ) ( )( ) ( )( ) ( )( ) ( )S F S FS F S FS F S FS F S F====  and 
1 21 21 21 2

( ) ( ).( ) ( ).( ) ( ).( ) ( ).H F H FH F H FH F H FH F H F>>>>  

2. 
1 21 21 21 2

F FF FF FF F≺≺≺≺  if and only if either 
1 21 21 21 2

( ) ( )( ) ( )( ) ( )( ) ( )S F S FS F S FS F S FS F S F<<<<  or 
1 21 21 21 2

( ) ( )( ) ( )( ) ( )( ) ( )S F S FS F S FS F S FS F S F====  and 
1 21 21 21 2

( ) ( ).( ) ( ).( ) ( ).( ) ( ).H F H FH F H FH F H FH F H F<<<<  
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3. 
1 21 21 21 2

F FF FF FF F≈≈≈≈  iff 
1 21 21 21 2

( ) ( )( ) ( )( ) ( )( ) ( )S F S FS F S FS F S FS F S F====  and 
1 21 21 21 2

( ) ( ).( ) ( ).( ) ( ).( ) ( ).H F H FH F H FH F H FH F H F====  

 

3. Weight Calculation for Criteria using the Entropy Method 

 

This section outlines a step-by-step method for calculating criteria weights using an entropy-

based approach. For more details, please refer to Shannon's work [34]. If 
×

= ( ( ))
ij m n

D S P  be the 

decision matrix and =
1 2

( , ,..., )T
n

w w w w  is the weight such that ≤ ≤0 1
j

w  along with 
=

=
1

1.
n

j
j

w  

Following are the different steps to calculate criteria weights =, 1,2,..., .
j

w j n  

Step 1: For = 1,2,...,j n  calculate 
=

= − 
1

1
log( ),

log( )

m

j ij ij
i

E p p
m

 where 

=

=


1

( )
.

( )

ij

ij n

ij
j

S F
p

S F

 It is 

worth mentioning that 
→

→
0  .

lim log 0.
ij

ij ij
p

p p  

Step 2: For = 1,2,...,j n  calculate 

=

−
=

−
1

1
.

1

j

j n

j
j

E
w

E

  

 

4. Method to use membership and non-membership functions aggregation in MCDM 

 

This section describes how membership and non-membership functions aggregation can be 

applied to solve an MCDM problem when the criteria weights are unknown, with the weights 

determined using Shannon entropy. Let 
×

= ( )
ij m n

D F  be the decision matrix. Here, each element of 

the decision matrix be expressed in terms of FFNs as µ γ= ( , ).
ij ij ij

F  Now, using the entropy method 

we calculated the criteria weights =
1 2

( , ,..., ) .T
m

w w w w  After that, we employed membership and 

non-membership functions aggregation and derived score values of each alternative =, 1,2,..., .
i

A i m  

We first computed the weighted average of the membership and non-membership degrees for each 

alternative 
i

A  and then we computed the corresponding scoring function values. Based on this, the 

choice with the greatest score function value is the most effective selection. 

Step 1 −−−− Form the decision matrix. Let there are m  alternatives 
1 2

, , ...,
m

A A A   and n  criteria  

1 2
, , ...,

n
C C C  and µ γ= ( , )

ij ij ij
F  is either benefit or cost for the decision makers’ point of view. Then, 

the decision matrix (DM) is 
×

= ( ) .
ij m n

D F   

Step 2 −−−− Calculate the score function value of each .
ij

F  Then, normalized DM can be written as 

×
(( ) ).

ij m n
S F  Here, µ γ=( ) (( , ))

ij ij ij
S P S  is the score function value, which is either benefit or cost 

in view of decision-makers under uncertainty.  

Step 3 −−−− Calculate the weight vector =
1 2

( , ,..., )T
n

w w w w  using the entropy method. 

Step 4 −−−− Calculate the weighted average of the membership degrees to the power of three for 

each alternative .
i

A  This can be done using the following formula: 
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3333

11113333

iiii

nnnn

j ijj ijj ijj ij
jjjj

AAAA nnnn

jjjj
jjjj

wwww

wwww

µµµµ

µµµµ
====

====

====





                                                                                                                   (2) 

 

Step 5 −−−− Calculate the weighted average of the non-membership degrees to the power of three 

for each alternative .
i

A  This can be done using the following formula: 

 

3333

11113333

iiii

nnnn

j ijj ijj ijj ij
jjjj

AAAA nnnn

jjjj
jjjj

wwww

wwww

γγγγ

γγγγ
====

====

====





                                                                                                                   (3) 

 

Step 6 −−−− Calculate µ
iA

 and γ
iA

 from Steps 3-4. 

Step 7 −−−− Calculate ( )
i

S A  for each alternative 
i

A  using Definition 2.5.  

Step 8 −−−− The best choice can be identified by ranking the alternatives based on their score values, 

with the alternative having the highest score being the most desirable. 

 

5. Several Technical Terms Related to Software Design 

 

In this section, we discuss several terms that are useful for designing a software system. We have 

also interpreted these terms within the framework of Fermatean fuzzy set theory. 

 

5.1 Usability 

 

Usability in software design refers to how easily users can interact with the software to 

accomplish their goals efficiently. It involves intuitive interface design, ease of learning, error 

prevention, and user satisfaction. High usability means users can quickly learn how to use the 

software, perform tasks with minimal effort, and recover from errors without frustration. Usability 

testing with real users helps identify issues and improve the design. In terms of fuzzy sets, usability 

can be represented with a membership function that quantifies the degree to which a software 

system meets usability criteria. For example, a usability score might range from 0 (not usable) to 1 

(highly usable), capturing the nuances of user experience. A fuzzy value like (0.7, 0.2) indicates a 70% 

usability score, with a 20% non-usability score, reflecting the uncertainty or variability in user 

feedback. 

 

5.2 Performance 

 

Performance in software design measures how well the software responds to user inputs and 

processes data efficiently. It includes aspects like load time, response time, and throughput. High-

performance software provides quick feedback to user actions, handles multiple tasks 

simultaneously, and operates smoothly under varying conditions. Performance testing evaluates the 

software's behaviour under normal and peak loads to ensure it meets expected standards. In fuzzy 

set terms, performance can be expressed with a membership function indicating the degree of 
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performance quality. For instance, a performance score could range from 0 (poor performance) to 1 

(excellent performance). A fuzzy value like (0.8, 0.15) might denote an 80% performance score, with 

a 15% score for poor performance, reflecting the performance variability under different conditions. 

 

5.3 Security 

 

Security in software design focuses on protecting the software and its data from unauthorized 

access and threats. It involves implementing measures such as encryption, authentication, and 

authorization to ensure data confidentiality, integrity, and availability. Secure software prevents data 

breaches, protects user privacy, and ensures that only authorized users can access sensitive 

information. Security assessments and regular updates help maintain robust protection against 

evolving threats. In fuzzy set terms, security can be represented by a membership function that 

quantifies the security level. For example, a security score might range from 0 (insecure) to 1 (highly 

secure). A fuzzy value like (0.9, 0.05) could indicate a 90% security score, with a 5% score for 

insecurity, reflecting uncertainties in the security assessment process. 

 

5.4 Scalability 

 

Scalability in software design refers to the system's ability to handle increasing workloads and 

expand its resources to accommodate growth. Scalable software can efficiently manage more users, 

data, or transactions without performance degradation. This involves designing the system 

architecture to support horizontal or vertical scaling, load balancing, and distributed computing. 

Scalability ensures that the software remains responsive and reliable as demand grows. In fuzzy set 

terms, scalability can be represented by a membership function indicating the scalability level. For 

example, a scalability score might range from 0 (not scalable) to 1 (highly scalable). A fuzzy value like 

(0.75, 0.2) could denote a 75% scalability score, with a 20% score for non-scalability, reflecting the 

variability in the system's ability to scale under different conditions.  

 

5.5 Maintainability 

 

Maintainability in software design refers to how easily the software can be updated, modified, 

and managed over time. High maintainability means developers can quickly fix bugs, add new 

features, and adapt the software to changing requirements. Factors contributing to maintainability 

include clean code, modular design, comprehensive documentation, and adherence to coding 

standards. Maintainable software reduces technical debt, improves development efficiency, and 

extends the software's lifespan. In fuzzy set terms, maintainability can be represented by a 

membership function indicating the ease of maintenance. For example, a maintainability score might 

range from 0 (difficult to maintain) to 1 (easy to maintain). A fuzzy value like (0.65, 0.30) could 

indicate a 65% maintainability score, with a 30% score for difficulty in maintenance, reflecting 

uncertainties in the maintenance process. 

 

6. Numerical Example 

 

In software engineering, selecting an optimal design from multiple alternatives requires careful 

consideration of various criteria. This case study explores four software design alternatives (A1, A2, 

A3, and A4) evaluated against five key criteria: Usability (C1), Performance (C2), Security (C3), 
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Scalability (C4), and Maintainability (C5). The evaluation employs a Fermatean fuzzy decision matrix 

to handle uncertainty and imprecision in the assessment process.  

Software design alternatives are: 

 

i. A microservices-based architecture (A1). 

ii. A monolithic architecture (A2). 

iii. A serverless architecture (A3). 

iv. A service-oriented architecture (A4). 

 

Evaluation criteria are: 

 

i. Usability (C1) − The ease of use and user experience of the software. 

ii. Performance (C2) − The efficiency and speed of the software. 

iii. Security (C3) − The ability of the software to protect against threats. 

iv. Scalability (C4) − The capacity of the software to handle growth. 

v. Maintainability (C5) − The ease with which the software can be maintained and updated.  

 

(a) Criteria definition −−−− All evaluation criteria are benefits, such as usability (C1), performance 

(C2), security (C3), scalability (C4), and maintainability (C5). In this example, there were no cost 

criteria. 

(b) Fuzzy number representation −−−− Each criterion's value is represented as a Fermatean Fuzzy 

Number ( , ),
F F

F µ γ=  where 
F

µ  is the degree of membership and 
F

γ  is the degree of non-

membership of the Fermatean fuzzy set. 

(c) Scoring functions −−−− They were applied as 
3 31

( ) (1 ).
2 F F

S F µ γ= + −  

(d) Solution procedure −−−− Method to use membership and non-membership functions aggregation 

in MCDM was discussed in Section 4. For this problem, the Fermatean fuzzy decision matrix was 

provided in Table 1. Each criterion is evaluated on a scale from 0 to 1, where 0 represents the lowest 

and 1 the highest score.  

 

  Table 1 

  Fermatean fuzzy decision matrix 

Alternatives/criteria Usability (C1) Performance (C2) Security (C3) Scalability (C4) Maintainability (C5) 

Design A1 (0.70, 0.20) (0.60, 0.30) (0.80, 0.15) (0.75, 0.20) (0.65, 0.25) 

Design A2 (0.65, 0.25) (0.70, 0.20) (0.75, 0.20) (0.70, 0.25) (0.60, 0.30) 

Design A3 (0.8, 0.15) (0.75, 0.20) (0.65, 0.25) (0.80, 0.15) (0.70, 0.20) 

Design A4 (0.75, 0.20) (0.80, 0.15) (0.70, 0.25) (0.75, 0.20) (0.65, 0.25) 

 

Using the entropy method mentioned here, we have calculated the weight vector as 

(0.22,0.20,0.21,0.24,0.13)Tw =  for the decision matrix provided in Table 2. 

 

  Table 2 

  Converted decision matrix based on score function 

Alternatives/criteria Usability (C1) Performance (C2) Security (C3) Scalability (C4) Maintainability (C5) 

Design A1 0.67 0.59 0.75 0.71 0.63 

Design A2 0.63 0.67 0.71 0.66 0.59 

Design A3 0.75 0.71 0.63 0.75 0.67 

Design A4 0.71 0.75 0.66 0.71 0.63 
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The, we calculated ( , )
i iA A

µ γ  (i=1,…,4) using the method provided in Section 4. The detail 

computational results are provided in Table 3. From Table 3, it was observed that A3 and A4 are more 

like each other, as are A1 and A2.  

 

  Table 3 

  Computational results based on score function 

Alternatives 
iiiiAAAA

µµµµ  
iiiiAAAA

γγγγ  Score value Rank 

Design A1 0.71 0.23 0.676 3 

Design A2 0.69 0.24 0.657 4 

Design A3 0.75 0.20 0.707 1 

Design A4 0.74 0.21 0.697 2 

 

The clustering representation of the alternatives is depicted in Figure 1. 

 

 

Fig. 1. Clustering representation of the alternatives 

 

 In Figure 2, the cluster centroid is marked (X), and the centroid coordinates are (0.7225, 0.22). In 

the horizontal direction, the points above the centroid are considered more suitable alternatives, 

whereas those below the centroid are given lesser priority. 

 

 

Fig. 2. Membership and non-membership grades and cluster centroid of the alternatives 
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The optimal design based on our score functions was achieved using our proposed approach. 

Detailed results are presented in Table 4. From Table 4, it is observed that our score function 

effectively determines the best design alternative. 

 

  Table 4 

  Results of the numerical experiment 

Used score function  Ranks of the alternatives Best design  

Type 1 Design A1 3 4 1 23 4 1 23 4 1 23 4 1 2
A A A AA A A AA A A AA A A A≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻  

3333
AAAA  

 

A comparative study was conducted to enhance the reliability of our proposed approach. For this 

purpose, the numerical example studied by Senapati & Yager [10] was considered. This example was 

solved using our proposed approach. The obtained results are given in Table 5 as well as displayed in 

Figure 3. It was also noted that the same results were obtained using our proposed approach to solve 

the decision-making problems.  

 

  Table 5 

  Computational results based on type 1 score function 

Alternatives 
iiiiAAAA

µµµµ  
iiiiAAAA

γγγγ  Score value Rank 

S1 0.64 0.48 0.575 3 

S2 0.68 0.61 0.549 4 

S3 0.77 0.47 0.678 1 

S4 0.67 0.46 0.604 2 

 

From Figure 5, it was observed that S1 and S4 are more similar, and S3, S1, and A2 are also 

approximately similar.  

 

 

Fig. 3. Score values for different alternatives with ranks 

 

The clustering representation of the alternatives S1, S2, S3, and S4 is depicted in Figure 4. 
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Fig. 4. Clustering representation of the alternatives S1 to S4 

 

In Figure 5, the cluster centroid is marked (X), and the centroid coordinates are (0.69, 0.505). In 

the horizontal direction, the points above the centroid are considered more suitable alternatives, 

whereas those below the centroid are given lesser priority. 

 

 

Fig. 5. Membership and non-membership grades and cluster centroid of S1 to S4 

 

The optimal design based on our score functions was achieved using the suggested approach. 

Detailed results are as 
3 4 1 2

S S S S≻ ≻ ≻  and best place is 
3

.S  Comparative results have been 

presented in Table 6.  

 

  Table 6 

  Comparative results 

Alternatives Ranks of the alternatives Best place 

Our proposed method 
3 4 1 23 4 1 23 4 1 23 4 1 2

S S S SS S S SS S S SS S S S≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻  
3333

SSSS  

Senapati and Yager [11] 
3 2 1 43 2 1 43 2 1 43 2 1 4

S S S SS S S SS S S SS S S S≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻  
3333

SSSS  

Senapati and Yager [10] 
3 1 4 23 1 4 23 1 4 23 1 4 2

S S S SS S S SS S S SS S S S≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻≻ ≻ ≻  
3333

SSSS  
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Based on the results suggested by Senapati and Yager [10, 11], the best option was 
3

,S  which 

aligned with our suggested approach. Therefore, it is concluded that our proposed approach provides 

an alternative method to solve real-life decision-making problems more simply. 

 

7. Conclusions 

 

An innovative approach was presented in this research for solving MCDM problems through the 

aggregation of membership and non-membership values using score functions of Fermatean fuzzy 

sets. By addressing inherent uncertainties and ambiguities present in complex decision-making 

scenarios, a significant improvement over the traditional fuzzy set-based approach was offered by 

this method. The use of a specific score function adjusted for Fermatean fuzzy sets played a crucial 

role in enhancing the precision and reliability of the aggregation process. The intricate relationships 

between membership and non-membership values were captured by this function, enabling a more 

exact representation of diverse criteria.  

The effectiveness of the proposed approach was demonstrated through a numerical study in 

software design, showcasing its practical applicability and potential for optimizing decision-making 

processes in this domain. The superiority of the proposed method was validated through a 

comparative study with existing research. The results highlighted the enhanced capability of 

Fermatean fuzzy sets in managing higher degrees of uncertainty and providing more accurate 

decision outcomes. This validation underscored the robustness and adaptability of the method, 

confirming its advantage over traditional MCDM approaches that often fall short in handling 

complex, real-world problems.  

The findings of this study suggest that the proposed aggregation method, grounded in the 

advanced mathematical framework of Fermatean fuzzy sets, can serve as a valuable tool for decision-

makers across various fields. Its application in software design illustrated not only its theoretical 

robustness but also its practical benefits, paving the way for further research and development in 

other domains. 
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