Evaluation of Carbon Footprints Associated with Cryptocurrency Mining using q-Rung Orthopair Fuzzy Hypersoft Sets

Authors

DOI:

https://doi.org/10.31181/sems21202410h

Keywords:

Bitcoin Mining, Carbon Footprint, q-Rung Orthopair Hypersoft Set, Averaging Aggregate Operators, Decision-making

Abstract

The environmental impact of Bitcoin mining in Kazakhstan, which is currently the third-largest market in the world by hash rate, is coming under further scrutiny. Data on the production of renewable energy and related carbon footprints are essential for evaluating the situation. To create a thorough picture of how Bitcoin mining and environmental responsibility connect in Kazakhstan, this paper allows for the analysis and prediction of the interactions between carbon emissions, renewable energy use, and Bitcoin mining. Using a q-rung orthopair fuzzy hypersoft set (q-ROFHS)-based multi-criteria decision-making technique can improve research on the environmental effects of Bitcoin mining, the integration of renewable energy sources, and the corresponding carbon footprints. The analytic hierarchy process is used to identify the best pollution reduction strategies while taking feasibility and cost-effectiveness into account. The proposed approach will assist the business in achieving its environmental objectives, lessen its negative effects on the environment, and promote a greener future. This study guarantees a more precise and dependable evaluation of pollution control tactics, considering not only the effects on the environment but also practicality and affordability. The outcomes highlight the developed approach's effectiveness and stability in managing complicated information within the parameters of q-ROFHS.

Downloads

Download data is not yet available.

References

Anandhabalaji, V., Babu, M., & Brintha, R. (2024). Energy Consumption by Cryptocurrency: A Bibliometric Analysis Revealing Research Trends and Insights. Energy Nexus, 13, 100274. https://doi.org/10.1016/j.nexus.2024.100274.

Krause, M., Tolaymat, T., & Katz, G. (2020). The Carbon Footprint of Bitcoin. Joule, 4(5), 1177-1186. https://doi.org/10.1016/j.joule.2019.05.012.

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.

Atanassov, K. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87–96.

Wang, W., & Liu, X. (2011). Intuitionistic fuzzy geometric aggregation operators based on Einstein operations. International Journal of Intelligent Systems, 26(11), 1049-1075. https://doi.org/10.1002/int.20498.

Xu, Z.S. (2007). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 5, 1179-1187. https://doi.org/10.1109/TFUZZ.2006.890678.

De, S.K., Biswas, R., & Roy, A.R. (2000). Some operations on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 477-484. https://doi.org/10.1016/S0165-0114(98)00191-2.

Lin, L., Yuan, X. H., & Xia, Z. Q. (2007). Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets. Journal of Computer and System Sciences, 73(1), 84-88. https://doi.org/10.1016/j.jcss.2006.03.004.

Garg, H., (2018). An improved cosine similarity measure for intuitionistic fuzzy sets and their applications to decision-making process. Hacettepe Journal of Mathematics and Statistics, 47(6), 1578-1594. https://doi.org/10.15672/HJMS.2017.510.

Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 1222-1230. https://doi.org/10.1109/TFUZZ.2016.2604005.

Molodtsov, D. (1999). Soft set theory—first results. Computers & Mathematics with Applications, 37(4-5), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5.

Maji, P. K., Biswas, R., & Roy, A.R. (2003). Soft set theory. Computers & Mathematics with Applications, 45(4-5), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6.

Cagman, N., & Enginoglu, S. (2011). FP-soft set theory and its applications. Annals of Fuzzy Mathematics and Informatics, 2(2), 219-226.

Ali, M.I., Feng, F., Liu, X., Min, W.K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & Mathematics with Applications, 57(9), 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009.

Maji, P.K., Biswas, R., & Roy, A.R. (2001). Fuzzy soft sets. Journal of Fuzzy Mathematics, 9, 589–602.

Roy, A.R., & Maji, P.K. (2007). A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203(2), 412-418. https://doi.org/10.1016/j.cam.2006.04.008.

Cagman, N., Enginoglu, S., & Citak, F. (2011). Fuzzy soft set theory and its applications. Iranian Journal of Fuzzy Systems, 8(3), 137-147.

Feng, F., Jun, Y. B., Liu, X., & Li, L. (2010). An adjustable approach to fuzzy soft set-based decision making. Journal of Computational and Applied Mathematics, 234(1), 10-20. https://doi.org/10.1016/j.cam.2009.11.055.

Maji, P.K., Biswas, R., & Roy, A.R. (2001). Intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics, 9, 677–692.

Çağman, N., & Karataş, S. (2013). Intuitionistic fuzzy soft set theory and its decision making. Journal of Intelligent & Fuzzy Systems, 24(4), 829-836.

Arora, R., & Garg, H. (2018). A robust aggregation operator for multi-criteria decision-making with intuitionistic fuzzy soft set environment. Scientia Iranica, 25(2), 931-942. https://doi.org/10.24200/sci.2017.4433.

Muthukumar, P., & Krishnan, G.S.S. (2016). A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Applied Soft Computing, 41, 148-156. https://doi.org/10.1016/j.asoc.2015.12.002.

Yager, R. R., Alajlan, N., & Bazi, Y. (2018). Aspects of generalized orthopair fuzzy sets. International Journal of Intelligent Systems, 33(11), 2154-2174. https://doi.org/10.1002/int.22008.

Ali, M.I. (2018). Another view on q‐rung orthopair fuzzy sets. International Journal of Intelligent Systems, 33(11), 2139-2153. https://doi.org/10.1002/int.22007.

Liu, P., & Wang, P. (2018). Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making. International Journal of Intelligent Systems, 33(2), 259-280. https://doi.org/10.1002/int.21927.

Bede, B. (2013). General q-rung orthopair fuzzy linguistic variables and their application in decision-making. Knowledge-Based Systems, 37, 283-294.

Bede, B., & Šipošová, A. (2020). Multi-criteria decision-making using q-rung orthopair fuzzy linguistic variables. Expert Systems with Applications, 146, 113208.

Hussain, A., Ali, M. I., Mahmood, T., & Munir, M. (2020). q‐Rung orthopair fuzzy soft average aggregation operators and their application in multi-criteria decision‐making. International Journal of Intelligent Systems, 35(4), 571-599. https://doi.org/10.1002/int.22217.

Smarandache, F. (2018). Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic Sets and Systems, 22, 168-170.

Saqlain M, Sana M, Jafar N, Saeed. M, Said. B, (2020). Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Sets. Neutrosophic Sets and Systems, 32, 317-329. https://doi.org/10.5281/zenodo.3723165.

Saqlain, M., Riaz, M., Kiran, N., Kumam, P., & Yang, M.S. (2023). Water Quality Evaluation Using Generalized Correlation Coefficient for M-Polar Neutrosophic Hypersoft Sets. Neutrosophic Sets and Systems, 55, 58-89. https://doi.org/10.5281/zenodo.7832716.

Riaz, M., Habib, A., Saqlain, M., & Yang, M.S. (2023). Cubic bipolar fuzzy-VIKOR method using new distance and entropy measures and Einstein averaging aggregation operators with application to renewable energy. International Journal of Fuzzy Systems, 25(2), 510-543. https://doi.org/10.1007/s40815-022-01383-z.

Saqlain, M., Riaz, M., Imran, R., & Jarad, F. (2023). Distance and similarity measures of intuitionistic fuzzy hypersoft sets with application: Evaluation of air pollution in cities based on air quality index. AIMS Mathematics, 8(3), 6880-6899.

Saqlain, M., Garg, H., Kumam, P., & Kumam, W. (2023). Uncertainty and decision-making with multi-polar interval-valued neutrosophic hypersoft set: A distance, similarity measure, and machine learning approach. Alexandria Engineering Journal, 84, 323-332. https://doi.org/10.1016/j.aej.2023.11.001.

Saqlain, M., Kumam, P., Kumam, W., & Phiangsungnoen, S. (2023). Proportional Distribution Based Pythagorean Fuzzy Fairly Aggregation Operators with Multi-Criteria Decision-Making. IEEE Access, 11, 72209-72226. https://doi.org/10.1109/ACCESS.2023.3292273.

Saqlain, M., Kumam, P., & Kumam, W. (2023). Linguistic Hypersoft Set with Application to Multi-Criteria Decision-Making to Enhance Rural Health Services. Neutrosophic Sets and Systems, 61, 28-52. https://doi.org/10.5281/zenodo.10428591.

Khan, S., Gulistan, M., & Wahab, H. A. (2021). Development of the structure of q-Rung Orthopair Fuzzy Hypersoft Set with basic Operations. Punjab University Journal of Mathematics, 53(12), 881-892. https://doi.org/10.52280/pujm.2021.531204.

Zulqarnain, R.M., Rehman, H.K.U., Awrejcewicz, J., Ali, R., Siddique, I., Jarad, F., & Iampan, A. (2022). Extension of Einstein average aggregation operators to medical diagnostic approach under Q-rung orthopair fuzzy soft set. IEEE Access, 10, 87923-87949. https://doi.org/10.1109/ACCESS.2022.3199069.

Zulqarnain, R.M., Siddique, I., Eldin, S.M., & Gurmani, S.H. (2022). Extension of interaction aggregation operators for the analysis of cryptocurrency market under q-rung orthopair fuzzy hypersoft set. IEEE Access, 10, 126627-126650. https://doi.org/10.1109/ACCESS.2022.3224050.

Gurmani, S.H., Chen, H., & Bai, Y. (2023). Extension of TOPSIS Method Under q-Rung Orthopair Fuzzy Hypersoft Environment Based on Correlation Coefficients and Its Applications to Multi-Attribute Group Decision-Making. International Journal of Fuzzy Systems, 25, 1-14. https://doi.org/10.1007/s40815-022-01386-w.

Zulqarnain, R.M., Siddique, I., Mahboob, A., Ahmad, H., Askar, S., & Gurmani, S.H. (2023). Optimizing construction company selection using einstein weighted aggregation operators for q-rung orthopair fuzzy hypersoft set. Scientific Reports, 13(1), 1-43. https://doi.org/10.1038/s41598-023-32818-8.

Ying, C., Slamu, W., & Ying, C. (2022). Multi-Attribute Decision Making with Einstein Aggregation Operators in Complex Q-Rung Orthopair Fuzzy Hypersoft Environments. Entropy, 24(10), 1494. https://doi.org/10.3390/e24101494.

Downloads

Published

2024-09-04

How to Cite

Saqlain, M., Simic, V., & Pamucar, D. (2024). Evaluation of Carbon Footprints Associated with Cryptocurrency Mining using q-Rung Orthopair Fuzzy Hypersoft Sets. Spectrum of Engineering and Management Sciences, 2(1), 122-134. https://doi.org/10.31181/sems21202410h