Uncertainty Quantification in Steady-State Heat Transfer: A Comprehensive Analysis of DRAM and MCMC Methods with Applications to Thermal Systems

Authors

DOI:

https://doi.org/10.31181/sems31202539a

Keywords:

Uncertainty Quantification, Parameter Estimation, Bayesian Inference, Heat Transfer, Delayed Rejection Adaptive Metropolis, Markov Chain Monte Carlo

Abstract

This research addresses the limitations of traditional deterministic methods in capturing uncertainties in heat transfer systems, particularly in parameter estimation and uncertainty quantification. We aim to evaluate and compare Delayed Rejection Adaptive Metropolis (DRAM) and Markov Chain Monte Carlo (MCMC) methods for uncertainty quantification in steady-state heat transfer, using experimental data from a copper rod with 15 temperature measurements. The study estimates heat flux and convective heat transfer coefficient parameters, comparing results with Ordinary Least Squares (OLS) estimation. Results show DRAM produces tighter parameter distributions (0.2312) compared to MCMC (0.2641), while both methods yield similar mean estimates and demonstrate strong negative correlation between parameters. A comparison with OLS shows close agreement across all three methods, concluding that DRAM provides slightly superior performance in parameter estimation accuracy while all methods effectively capture parameter uncertainties in steady-state heat transfer analysis.

References

Smith, R. C. (2014). Uncertainty Quantification: Theory, Implementation, and Applications. Society for Industrial and Applied Mathematics, Philadelphia.

Calvetti, D., & Somersalo, E. (2021). Introduction to Bayesian Scientific Computing: Applications in Computational Engineering. Springer.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2020). Bayesian Data Analysis (3rd ed.). Chapman & Hall/CRC.

Le Maître, O. P., & Knio, O. M. (2021). Spectral Methods for Uncertainty Quantification: Applications in Engineering and Science. Springer.

Orlande, H. R. B. (2012). Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications. Journal of Heat Transfer, 134(3), 0631011.

Marzouk, Y. M., & Najm, H. N. (2009). Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. Journal of Computational Physics, 228(6), 1862-1902.

Abid, M., Bukhari, S., & Saqlain, M. (2025). Enhancing Software Effort Estimation in Healthcare Informatics: A Comparative Analysis of Machine Learning Models with Correlation-Based Feature Selection. Sustainable Machine Intelligence Journal, 10, 50-66.

Liu, J. S., & Chen, R. (2022). Sequential Monte Carlo Methods for Dynamic Systems: A Bayesian Perspective. Journal of Computational Physics, 425, 110211.

Incropera, F. P., & DeWitt, D. P. (2002). Fundamentals of Heat and Mass Transfer. John Wiley & Sons.

Abid, M., & Shahid, M. (2024). Tumor Detection in MRI Data using Deep Learning Techniques for Image Classification and Semantic Segmentation. Sustainable Machine Intelligence Journal, 9, 1-13.

Robert, C. P., & Casella, G. (2004). Monte Carlo Statistical Methods. Springer Texts in Statistics.

Özisik, M. N., & Orlande, H. R. B. (2000). Inverse Heat Transfer: Fundamentals and Applications. Taylor & Francis.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics.

Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall/CRC.

Abid, M., & Shahid, M. (2024). Data-driven evaluation of background radiation safety using machine learning and statistical analysis. Big Data and Computing Visions, 4(2), 110-134.

Brooks, S., Gelman, A., Jones, G. L., & Meng, X. L. (2011). Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC.

Zhang, J., & Du, X. (2023). Machine Learning Approaches in Uncertainty Quantification for Thermal Systems. International Journal of Heat and Mass Transfer, 203, 123566.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global Sensitivity Analysis: The Primer. John Wiley & Sons.

Le Maître, O. P., & Knio, O. M. (2010). Spectral Methods for Uncertainty Quantification. Springer.

Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numerica, 19, 451-559.

Soize, C. (2017). Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering. Springer.

Xiu, D. (2010). Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press.

Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter Estimation and Inverse Problems. Elsevier.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC.

Xiu, D. (2023). Numerical Methods for Stochastic Computations: A Modern Approach. Princeton University Press.

Abid, M., & Shahid, M. (2024). A Novel Numerical Treatment to One Dimensional Heat and Wave Equations with Second Order Accuracy. Computational Algorithms and Numerical Dimensions, 3(3), 228-242.

Carlin, B. P., & Louis, T. A. (2008). Bayesian Methods for Data Analysis. Chapman & Hall/CRC.

Evans, M., & Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford University Press.

Gilks, W. R., & Berzuini, C. (2001). Following a Moving Target—Monte Carlo Inference for Dynamic Bayesian Models. Journal of the Royal Statistical Society: Series B, 63(1), 127-146.

Green, P. J., & Hastie, D. I. (2009). Reversible Jump MCMC. Genetics, 155(3), 1391-1403.

Haario, H., Saksman, E., & Tamminen, J. (2001). An Adaptive Metropolis Algorithm. Bernoulli, 7(2), 223-242.

Abid, M., Akhtar, T., Awad, M. M., & Imran, M. (2025). Advanced numerical simulations of lid-driven cavity flows using an optimized parallelized fractional step method. Computational Algorithms and Numerical Dimensions, 4(1), 1-17.

Soize, C. (2022). Uncertainty Quantification in Computational Engineering. Springer.

Mira, A. (2001). On Metropolis-Hastings Algorithms with Delayed Rejection. Metron, 59(3-4), 231-241.

Abid, M., Bibi, M., Yasin, N., & Shahid, M. (2024). A novel computational analysis of boundary-driven two-dimensional heat flow with internal heat generation. Computational Algorithms and Numerical Dimensions, 3(1), 1-16.

Oakley, J. E., & O'Hagan, A. (2004). Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach. Journal of the Royal Statistical Society: Series B, 66(3), 751-769.

Robert, C. P. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer.

Saltelli, A., Chan, K., & Scott, E. M. (2000). Sensitivity Analysis. Wiley Series in Probability and Statistics.

Robert, C. P., & Casella, G. (2020). Monte Carlo Statistical Methods: Innovations in Scientific Computing. Springer.

Abid, M., Akhtar, T., Awad, M. M., & Imran, M. (2025). Advanced numerical simulations of lid-driven cavity flows using an optimized parallelized fractional step method. Computational Algorithms and Numerical Dimensions, 4(1), 1-17.

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian Theory. John Wiley & Sons.

Congdon, P. (2006). Bayesian Statistical Modelling. John Wiley & Sons.

Kennedy, M. C., & O'Hagan, A. (2021). Bayesian Calibration of Computational Models: Advances and Applications. Journal of the Royal Statistical Society, 63(3), 425-456.

Gilks, W. R. (2005). Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC.

Robert, C. P., & Casella, G. (2009). Introducing Monte Carlo Methods with R. Springer.

Roberts, G. O., & Rosenthal, J. S. (2009). Examples of Adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2), 349-367.

Tarantola, A. (2020). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM.

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference. Springer.

Published

2025-01-18

How to Cite

Abid, M., Akhtar, T., & Bhatt, H. (2025). Uncertainty Quantification in Steady-State Heat Transfer: A Comprehensive Analysis of DRAM and MCMC Methods with Applications to Thermal Systems. Spectrum of Engineering and Management Sciences, 3(1), 63-75. https://doi.org/10.31181/sems31202539a